

INSTITUTE OF ENGINEERING

Model Entrance Exam

(Set-7)

Instructions:

There are 100 multiple-choice questions, each having four choices of which only one choice is correct.

Date: 2080/03/30

(July-15)

Duration: 2 hours Time: 8 AM – 10 AM

Section-A (1 marks)

1)	The rival team was	s all out 320					
	a) by	b) at	c) for	d) on			
2)	The statement 'to	gatecrash' means:					
	a) try to force an a	greement favorable	to oneself				
	b) to end in confus	sion					
	c) to get into diffic	culties					
	d) to attend a party	without having bee	n invited				
3)	Augment (Antony	m):					
	a) prevent	b) decrease	c) compensate	d) surpass			
4)	Enigma (Synonym	n):	•				
	a) praise	b) puzzle	c) clear	d) elusive			
5)	They will have go	t their friend					
,	a) to fixing		c) fixed	d) to fix			
6)	,	e children si	*	,			
,				d) is			
7)	Why don't you he	b) was lp the students	essay now?	,			
,	a) wrote	b) writing	c) to write	d) for writing			
8)	,	,	transferred to another of	,			
-,	a) had worked		b) had been worki				
	c) has worked		d) was working	6			
9)	,	you go to Pokhara t					
- /	· ·						
	,	a) I asked him whether I would go to Pokhara the next day.b) I asked him whether he would go to Pokhara the next day.					
		_	o Pokhara the next day.				
		ether he will go to Po					
10)		ic transcription of:	mara the next day.				
	a) quay	-	c) you	d) knew			
11)			written" is a se				
/	a) simple		b) complex				
	c) compound		d) comparative				
12)	-	pattern of the sentence	<u>-</u>	Il never give you a positive life" is:			
/	a) subject + verb + direct object + objective complement						
	b) subject + verb + indirect object + direct object						
	c) subject + verb + direct object						
	d) subject + linkin	g verb + predicate a	liective				
12)	The dimensions of	f nhysical quantity V	in the equation Force =	X is given by:			
13)	The difficultions of		iii iiie equation roice –	Density Is given by.			
	a) $M^1L^4T^{-2}$	b) $M^2L^{-2}T^{-1}$	c) $M^2L^{-2}T^{-2}$	d) $M^1L^{-2}T^{-1}$			
14)	The area under vel	locity-time graph for	a particle in a given into				
	a) velocity	b) acceleration	c) work done	d) displacement			
15)	If action and react	ion forces are always	s equal in magnitude, the	en these forces:			
	a) will produce accelerations of equal magnitudes						
	b) may not produce accelerations of equal magnitudes						
	c) produce velociti	ies of equal magnitud	des				
		e accelerations of equ					
16)				if the total external force acting on the			
	system is:						
	a) minimum	b) maximum	c) unity	d) zero			

17)	quantities is not conserved?				
	a) angular momentum	b) mass of an object			
	c) total mechanical energy	d) linear momentum			
18)	The circular motion of a partic	le with constant speed is:			
	a) periodic and simple harmon	ic b) simple harmonic b	out not periodic		
	c) neither periodic nor simple	harmonic d) periodic but not si	mple harmonic		
19)	Which of the following proces	s is correct for given P-V diagram?			
	P				
	↑				
	v				
	a) Adiabatic process	b) Isothermal process	3		
	c) Isobaric process	d) Isochoric process			
20)	· ·	at which the radiative emission from	a black body at a temperature T K		
,	is maximum, then:		•		
	a) $\lambda_m \propto T$	b) $\lambda_m \propto T^{-1}$			
	c) $\lambda_m \propto T^{-2}$	d) λ_m is independent	on T		
21)	The phenomenon of beats can	***			
- 1)	a) longitudinal waves only	b) transverse waves of	only		
	c) sound waves only	d) both longitudinal a	•		
22)	The electric field at a point is:	a) both fongitudinar c	and trainsverse waves		
22)	a) always continuous				
	b) continuous if there is no cha	arge at that point			
	c) discontinuous if there is a cl	-			
	d) both b and c are correct	iarge at that point			
23)		l current carrying wires is independe	ent of		
23)	a) their distance of separation	b) the length of the w			
	c) the magnitude of currents	d) the radii of the wir			
24)	· •	de of ferromagnetic materials which			
27)	_	_			
	a) low permeability and low retentivity b) high permeability and high retentivity c) high permeability and low retentivity d) low permeability and high retentivity				
25)	Lenz's law is a consequence of	• • •	ind high retentivity		
23)	a) charge b) energy		d) induced current		
26)	, ,	· · · · · · · · · · · · · · · · · · ·	blue light, the interference fringes		
20)	become:	nent, if yellow light is replaced by	blue light, the interference liniges		
		ton	d) doubrou		
27)	a) wider b) brigh	· · · · · · · · · · · · · · · · · · ·	d) darker		
27)	For a telescope to have large resolving power:				
	a) the focal length of its objective should be large				
	b) the focal length of its eye piece should be large c) the focal length of its eye piece should be small				
	· · · · · · · · · · · · · · · · · · ·				
20)	d) the aperture of its objective	•	.1		
28)	-	on increases, its de Broglie wavelen	gtn:		
	a) increases	b) decreases			
20)	c) remains same	d) may increase or de			
29)		charge carriers in a semiconductor	- ·		
20)	a) monovalent b) divalent c) trivalent d) pentavalent If the sum of roots of the equation $(a + 1)x^2 + (2a + 3)x + 3a + 4 = 0$ is -3, then the product of				
30)	_	$(a + 1)x^2 + (2a + 3)x + 3a - 3a$	+4 = 0 is -3, then the product of		
	roots is:		1) 2		
	a) 1 b) 4	c) 3	d) -2		

31)	$1 + \frac{(\log x)^2}{2!} + \frac{(\log x)^2}{4!}$	+···=			
	2: 4:		c) $\frac{x+x^{-1}}{2}$	d) $\frac{e^x + e^{-x}}{1}$	
32)		X	2	2	
32)	2) The n th term of a G.P, is 128 and the sum of its n terms is 255. If its common ratio is 2, then its fit term is:				
	a) 1	b) 2	c) 3	d) 4	
33)		y = 1 - 3i, then (x, y)		4) 1	
33)	a) $(2, -1)$		c) (-1, 2)	d) (-1, -2)	
34)		trix of order $n \times n$. The			
34)		b) $ A \neq 0$	c) $A^T = A$		
35)				ays this hall can be enlightened?	
33)	a) 10^2	b) 1023	c) 2 ¹⁰	d) 10!	
36)	The period of $f(x) =$	· ·	C) Z	u) 10:	
30)			π	J) _	
	a) $\frac{\pi}{3}$	$\frac{1}{2}$	c) $\frac{\pi}{6}$	d) π	
37)	$\lim_{x \to \infty} \frac{\tan x}{x} $ equals:				
	$x \to \infty$ x a) 1	b) 0	c) ∞	d) does not exist	
20)	<i>'</i>	· .	/	d) does not exist	
38)		$+\cot^{-1}(\tan x)$, then $\frac{dy}{dx}$	-		
	a) 1	b) 0	c) -1	d) -2	
39)		n curve is parallel to x-		J.,.	
	a) $\frac{dy}{dx} = 0$	b) $\frac{dy}{dx} = 1$	c) $\frac{dx}{dx} = 0$	d) $\frac{dx}{dy} = 1$	
40)	CC7C	ux	uy	uy	
40)	$\int_{\pi/6}^{\pi/2} \frac{\cos x}{\sin^2 x} =$				
	a) 0	b) 1	c) -1	d) 2	
41)	The equation of line v	which passes through th	he point $(-2,5)$ and c_1	its off equal intercepts on the axes	
	is:				
		b) $x - y + 3 = 0$			
42)	The equation $ax^2 + 3$	$3xy - 7y^2 = 0$ represe	ents two lines inclined	at an angle π if $a =$	
	a) 7/9	b) 9/7	c) 2	d) 3/7	
43)	If the parabola $y^2 = 4$	4ax passes through (3,	2), then length of latur	s rectum is:	
	a) 2/3	b) 4/3	c) 9/2	d) 4	
44)	$If 5x^2 + \lambda y^2 = 20 re$	epresents a rectangular	hyperbola, then $\lambda =$		
	a) 5	b) -5	c) 3	d) -4	
45)	The equation of a plan	ne through the point (1	, -1, 2) and parallel to	the plane $2x - 3y + z = 0$ is:	
	a) $2x - 3y + z = 7$		b) $2x + 3y - z = 7$		
	c) $2x - 3y + z = 2$		d) $2x + 3y - z = 2$		
46)	The value of tan(180	$0^{\circ} + \theta$). tan($90^{\circ} - \theta$) i	is:		
	a) 1	b) -1	c) 0	d) 2	
47)	The number of solution	ons of $\sin^2 \theta + 3\cos \theta$	$= 3 \text{ in } [-\pi, \pi] \text{ is:}$		
	a) 4	b) 2	c) 0	d) 1	
48)	If $\cos(2\sin^{-1}x) = \frac{1}{9}$, then x is equal to:			
ŕ	a) 2/3	b) -2/3	c) $\pm 2/3$	d) 4/5	
40)	,	,	′ <u>→</u>	•	
49)		be the represented by $3\vec{i}$	+ 4 <i>j</i> + 5 <i>k</i> , then the arc	d) 50	
50)	a) 12 Which are of the fell	b) 13	- / -	,	
50)		owing pairs of compot		of multiple proportions?	
	a) H_2S and SO_2		b) NH_3 and NCl_3		
	c) $FeCl_2$ and $FeCl_3$	_	d) CuO and Cu_2O		
51)	It an electron has spir	n quantum number of -	$+\frac{1}{2}$ and a magnetic qua	ntum of -1. It cannot be present in:	
	a) s-orbital	b) p-orbital	c) d-orbital	d) f-orbital	

52)	Which of the following species is paramagnetic?					
	a) <i>CN</i> ⁻	b) <i>NO</i>	c) O_2^{2-}	d) <i>CO</i>		
53)	Oxygen has an oxi	Oxygen has an oxidation state of +2 in:				
	a) H_2O_2	b) <i>H</i> ₂ <i>0</i>	c) <i>OF</i> ₂	d) <i>SO</i> ₂		
54)	A smuggler could	not carry gold by dep	ositing iron on the gold	surface because:		
	a) gold is denser					
	b) iron rusts					
	c) gold has higher	reduction potential th	an iron			
	d) gold has lower r	eduction potential tha	an iron			
55)	Beryllium shows diagonal relationship with:					
	a) Mg	b) Al	c) Si	d) Li		
56)	Froth flotation process is used for the metallurgy of:					
	,	b) oxide ores	′ L	d) amalgams		
57)	Which of the alkaline earth metal hydroxides is least soluble?					
	a) $Be(OH)_2$, , , , ,	, , , _	d) $Ba(OH)_2$		
58)	When ammonia is passed over heated CuO, it is oxidized to:					
	a) N ₂	b) NO ₂	c) N ₂ O	d) HNO ₂		
59)	Which of the following has the highest nucleophilicity?					
	a) <i>F</i> ⁻	b) <i>0H</i> ⁻	c) CH_3^-	d) NH_2^-		
60)	Acidic hydrogen is	_				
	a) Ethane	b) Ethyne	c) Ethene	d) Benzene		

Section-B (2 marks)

Read the following passages and answer the questions given below (61-64):

a) Look before you leap.

c) Monkey see, monkey do.

Dogs and cats should never be permitted to eat chocolate, because chocolate works like a poison in their bodies. Chocolate contains a chemical called theobromine, which is similar to caffeine. Human bodies are able to process the theobromine without any ill side effects, but dogs and cats cannot.

Different types of chocolate contain different amounts of theobromine. It would take 20 ounces of milk chocolate to kill a 20-pound dog, but only two ounces of baker's chocolate or six ounces of semisweet chocolate. The amounts, of course, are much smaller for a cat, whose body weight is typically less than that of a dog.

Most cats are not naturally attracted to eating chocolate, but many dogs are. Dogs by nature will sample nearly anything that they see their masters eating, so pet owners must take care to keep all chocolate products well out of reach of their dogs and cats.

b) Pet food for pets, people food for people.

d) A penny saved is a penny earned.

out of reach of their dogs and cats.				
61) According to the passage, why is chocolate poisonous for dogs and cats?				
a) It contains caffeine.	b) Chocolate is made from processed cocoa.			
c) It gets stuck in their intestines.	d) They cannot process theobromine.			
How much milk chocolate would be pois	sonous to a cat, according to the passage?			
a) substantially less than 20 ounces	b) substantially more than 20 ounces			
c) approximately one pound	d) half a Hershey bar			
Why might a dog eat chocolate, according	ng to the passage?			
a) Because it tastes good.	b) Dogs won't eat chocolate.			
c) They can smell the theobromine.	d) Dogs like to imitate their owners.			
What best summarizes this passage?	-			
•	According to the passage, why is chocola a) It contains caffeine. c) It gets stuck in their intestines. How much milk chocolate would be pois a) substantially less than 20 ounces c) approximately one pound Why might a dog eat chocolate, according a) Because it tastes good. c) They can smell the theobromine.			

65)	An aeroplane flyi	ing horizontally with a	a speed of 360 km/hr re	eleases a bomb at a height of 490 m from
	the ground. If $g = \frac{1}{2}$	= 9.8 m/s^2 , it will str	ike the ground at:	-
	a) 10 km	b) 100 km	c) 1 km	d) 16 km
66)				respectively are stretched with the same
	•	have potential energy		1) 4 1
(7)	a) 1:2	b) 2:1	c) 1:4	d) 4:1
67)	and same radius sphere. The ratio	is also rotating about of their kinetic energi	t its geometrical axis tes of rotation (E_{sphere})	
-0\	a) 2:3	b) 1:5	c) 1:4	d) 3:1
68)	gravitational pote	s m is placed at the ce ential on the surface of	f shell is:	rical shell of mass 3m and radius R. The
	a) $-\frac{Gm}{}$		b) $-\frac{3Gm}{}$	
	$a) - \frac{Gm}{R}$ $c) - \frac{4Gm}{R}$		b) $-\frac{3Gm}{R}$ d) $-\frac{2Gm}{R}$	
	c) $-\frac{R}{R}$		d) $-\frac{2\pi R}{R}$	
69)	Eight drops of w	ater, each of radius 2	mm are falling throug	th air at a terminal velocity of 8 cm/s. If
	they coalesce to f	form a single drop, the	en the terminal velocity	y of the combined drop will be:
	a) 32 cm/s	b) 30 cm/s	c) 28 cm/s	d) 24 cm/s
70)	The volume of a	a metal sphere increa	uses by 0.24% when	its temperature is raised by 40°C. The
	coefficient of line	ear expansion of the m		
	a) 2×10^{-5} ° C^{-1}		b) $6 \times 10^{-5} {}^{\circ}C^{-1}$	1
	c) 18×10^{-5} °C	1	d) 1.2×10^{-5} °C	·-1
71)	A mass of diaton	nic gas $(\gamma = 1.4)$ at a	pressure of 2 atmosph	neres is compressed adiabatically so that
	its temperature ri	ses from 27°C to 927°	C. The pressure of the	gas in the final state is:
	a) 8 atm	b) 28 atm	c) 68.7 atm	d) 256 atm
72)	sounded with A		s. When the same note	258 Hz and 262 Hz. An unknown note is sounded with B, the beat frequency
	a) 250 Hz	b) 252 Hz	c) 254 Hz	d) 256 Hz
73)	,	,	er system shown in the	,
,	2 V	3 μF		
	a) 8 µJ	b) 16 μJ	c) 2 µJ	d) 4 μJ
74)	•			and on a ferromagnetic core of relative
				tizing current of 1.2 A is:
×	a) 2.48 T	b) 3.48 T	c) 4.48 T	d) 5.48 T
75)				g a galvanometer of resistance 12 Ω and then the resistance R is:
	R	_		
	0 *****			
	The state of			
		2 V		
	a) 888 Ω	b) 988 Ω	c) 898 Ω	d) 999 Ω
76)	,	,	,	f 0.1 μF. If an alternating emf of 100 V
,		the current in the circ		
	a) 3.14 mA	b) 6.28 mA	c) 1.51 mA	d) 7.36 mA
		· · · · · · · · · · · · · · · · · · ·	· ·	· · · · · · · · · · · · · · · · · · ·

is equal to:

b) -1

a) 1

d) -2

77)	•	$=\sqrt{3}$), angle of minim	num deviation is equal	to angle of the prism. The angle of
	the prism is: a) 45°	b) 30°	c) 90°	d) 60°
78)		llium (Be^{3+}) has the s	,	the ground state of hydrogen. Then
79)	a) $n = 1$ In $\triangle ABC$, $b^2 \sin 2C$	b) $n = 2$	c) $n = 3$	d) $n = 4$
/	a) Δ	b) 2Δ	c) 3Δ	d) 4Δ
80)	(2.00)	$-1\left(\frac{2b}{1+b^2}\right) = \tan^{-1} x$, t		h
	a) $\frac{a-b}{1+ab}$	b) $\frac{a+b}{1-ab}$	c) $\frac{a}{1-ab}$	d) $\frac{b}{1-ab}$
81)	If in the expansion of	$F\left(x^4 - \frac{1}{x^3}\right)^{15}, x^{-17} \text{ occ}$	curs in the r th term, then	1:
	a) $r = 10$	b) $r = 11$		d) $r = 13$
82)		P is square of the first		
	a) 256	b) 128	c) 64	d) 512
83)	If ω is an imaginary ω	cube root of unity, then b) 2ω	$1 + \omega \omega^2 -\omega$ $1 + \omega^2 \omega -\omega^2$	is equal to:
			c) $3\omega^2$ $\omega - \omega^2$	$(d) -3\omega^2$
84)	The range of $f(x) =$	•		
	a) $[0, \sqrt{3}]$	b) $(0, \sqrt{3})$	c) $[0, \sqrt{3})$	d) $(0, \sqrt{3}]$
85)	$\lim_{x \to 1} \frac{ab^x - a^x b}{x - 1} =$			
	a) $ab \log(ab)$	b) $ab \log \left(\frac{a}{b}\right)$	c) $ab \log \left(\frac{b}{a}\right)$	d) $\frac{a}{b}\log(ab)$
86)	If $\sin y = x \sin(a + y)$	y), then $\frac{dy}{dx}$ equals:		
	a) $\sin(a+y)$	b) $\sin^2(a+y)$	c) $\frac{\sin(a+y)}{\sin a}$	$d) \frac{\sin^2(a+y)}{\sin a}$
87)	The angle of intersect	tion between the curve	$x^2 = 32y \text{ and } y^2 = 4$	4x at the point $(16, 8)$ is:
	a) 60°	b) 90°	c) $\tan^{-1}\left(\frac{3}{5}\right)$	d) $\tan^{-1}\left(\frac{4}{3}\right)$
88)	$\int \frac{dx}{\sqrt{x}(3+x)} =$	_	_	
		b) $\frac{2}{\sqrt{3}} \tan^{-1} \sqrt{\frac{x}{3}} + c$	V	$d)\frac{2}{\sqrt{3}}\cos^{-1}\frac{\sqrt{x}}{3}+c$
89)		thin the curve $ x + y $		
	a) 1	b) $2\sqrt{2}$	c) $\sqrt{2}$	d) 2 $-30y - 75 = 0$ represents a pair of
90)	straight lines are:			-30y - 75 = 0 represents a pair of
- 41	a) 4, 4	b) 4, 6	c) 4, -4	d) 0, 4
91)	If the circle $x^2 + y^2$ 8y - d = 0, then $c + 1$		bisects the circumfere	ence of the circle $x^2 + y^2 - 2x +$
	a) 60	b) 50	c) 40	d) 56
92)	If for the ellipse $\frac{x^2}{a^2}$ +	$\frac{y^2}{h^2} = 1$, y-axis is the n	ninor axis and the leng	th of latus rectum is one half of the
	length of its minor ax	is, then its eccentricity	is:	
	a) 1/2	b) $1/\sqrt{2}$	c) $\sqrt{3}/2$	d) 3/4
93)	A line makes angles	$\frac{\alpha}{2}$, $\frac{\beta}{2}$, $\frac{\gamma}{2}$ with the positive	e direction of coordinate	te axes, then $\cos \alpha + \cos \beta + \cos \gamma$

c) 2

94)	The decomposition of certain mass of $CaCO_3$ gave 11.2 dm^3 of CO_2 gas at STP. The mass of KOF required to completely neutralize the gas is:				
	a) 56 g	b) 28 g	c) 42 g	d) 20 g	
95)	, 0		, 0	be present in 100 mL of the	
ŕ	aqueous solution to g		,	•	
	a) 1 g	b) 2 g	c) 10 g d) 20g		
96)	The solubility of a sar	_		⁻⁴ mol/L. Its solubility product is	
,			c) 22×10^{-11}		
97)	The IUPAC name of				
,	$CH_3 - CH - CH = C$ $ \qquad $ $OH \qquad C$				
			b) 1 hydrovy 2 methy	ul nant 2 an 1 al	
			b) 4-hydroxy-2-methyl pent-2-en-1-al d) 2-hydroxy-3-methyl pent-2-en-5-al		
98)				isplaces 112 cm ³ of H ₂ at NTP will	
90)	be:	posited by the qualitity	of electricity which di	isplaces 112 cm of 112 at 1V11 will	
		b) 10.8 g	c) 1.08 g	d) 0.0108 a	
99)	,	,	,	ached to benzene or an unsaturated	
<i>))</i>)		rder of inductive effec	ĕ =	actica to benzene of an unsaturated	
		$(C_3)_2CH - < CH_3CH_2 -$			
	5 -	$(CH_3)_3C - < (CH_3)_3C - < CH_3CH_2 - < (CH_3CH_2)_3C - < (CH_2)_3C - < (CH$			
100)	, , , , , , , , , , , , , , , , , , , ,	$CH_2 - < (CH_3)_2 CH -$		1	
100)			netal ions in aqueous so	olution is:	
	a) $Na' > K' > Rb'$	> Li b) K	$> Rb^+ > Na^+ > Li^+$		
	c) $Rb^{+} > K^{+} > Na^{+}$	$> L\iota^{+}$ d) Li^{+}	$> Na^+ > K^+ > Rb^+$		

Thank You!!!!!!