

INSTITUTE OF ENGINEERING

Model Entrance Exam

(Set-8)

Instructions:

There are 100 multiple-choice questions, each having four choices of which only one choice is correct.

Date: 2080/04/06 (July-22) **Duration: 2 hours Time: 8 AM – 10 AM**

Section-A (1 marks)

1)	Often a team of engin	neers on one p	oroject.		
	a) works	b) work	c) are working	d) have worked	
2)	I am chosen for the c	ontest,?	_		
	a) aren't I	b) do I	c) am I	d) don't I	
3)	He stopped a	and doesn't do it anym	nore.		
	a) smoked		c) to smoke	d) smokes	
4)	He congratulated me	for what I			
	a) did	b) had done	c) have done	d) was doing	
5)	I would rather that he	e the work nex	xt week.		
	a) completed	b) completes	c) must complete	d) complete	
6)	He aimed the gun	me.			
	a) on	b) in	c) at	d) by	
7)	The prices are going	up by leaps and boun	<u>ds</u> .		
	a) irregularly	b) gradually	c) rapidly	d) systematically	
8)	Audacious (Synonyn	n):			
		b) Obvious	c) Venture	d) Daring	
9)	Replete (Antonym):				
	a) Stuffed	b) Enumerate	c) Concise	d) Starved	
10)	He said to his servan	t, "Why are you so laz	zy today?"		
	a) He asked his serva	ant why he was so lazy	y that day.		
	b) He asked his serva	ant why he had been s	o lazy that day.		
	c) He asked his serva	ant why he was being	so lazy that day.		
	d) He asked his serva	ant why was he so lazy	y that day.		
11)	/relz/ is the phonetic	c transcription of:	•		
	a) rise	b) rice	c) raise	d) risk	
12)	The compound sentence of "To his eternal disgrace, he betrayed his country." is:				
	a) He betrayed his country is an eternal disgrace.				
	b) For him betraying his country was an eternal disgrace.				
	c) He betrayed his country and this was to his eternal disgrace.				
	d) Eternal disgrace was his betraying the country.				
13)	The magnetic force acting on a current carrying conductor of length l carrying current i is given by				
			field induction B are:		
	a) $[MLT^{-2}A^{-1}]$	b) $[MT^{-2}A^{-1}]$	c) $[ML^2T^{-2}A^{-1}]$	d) $[LT^{-2}A^{-1}]$	
14)	Which of the followi	ng is a vector quantity	y?		
	a) electric current	b) weight	c) temperature	d) pressure	
15)	At the top of the trajectory of a projectile, the direction of its velocity and acceleration are:				
	a) parallel to each oth	ner			
	b) perpendicular to ea	ach other			
	c) inclined to each of	her at an angle of 45°			
	d) inclined to each ot	ther at an angle of 60°			
16)	A stone, tied to the end of a 20 cm long string, is revolved in a horizontal circle. If the centripetal				
	acceleration is 9.8 m/s ² , its angular speed is:				
	a) 22/7 rad/s	b) 7 rad/s	c) 14 rad/s	d) 20 rad/s	
17)	Water rises in a capillary tube to a height H, when the capillary is vertical. If the same capillary is				
	now inclined to the vertical, the length of water column in it will:				
	a) decrease				
	b) increase				
	c) will not change				
	d) may increase or de	ecrease depending on	the angle of inclination		

18)	The moderator in a a a) absorbs neutrons	nuclear reactor:	b) accelerate neutro	20			
	c) slows downs neurons	trong	d) absorbs thermal e				
19)			y electric and magnetic				
19)	a) α -particle	b) β -particle	c) photon	d) proton			
20)			, 1	on falls under gravity, then there is:			
20)		nt from south to north		on rans under gravity, then there is.			
	,	nt from north to south					
	′	ong the length of the c					
		long the length of the					
21)		eability is maximum f					
21)	a) diamagnetic	=	c) ferromagnetic	d) equal for all			
22)	<u> </u>		ween the plates of a cap	•			
,	a) its capacitance in		b) its capacitance de				
		mains unchanged	· •				
23)				g obliquely from a hard road into			
/	soft muddy track is:			,			
	a) reflection	b) refraction	c) diffraction	d) interference			
24)	,	of a thin lens can be	•	,			
,	a) using a monochro		,				
	b) using a doublet c	_					
		c) using a circular annular mask over the lens					
	d) increasing the siz						
25)	When the moon is n	ear horizon, it appear	s bigger due to:				
	a) atmospheric refra		b) scattering of light	t .			
	c) diffraction		d) total internal refle	ection			
26)	The temperature of	an ideal gas is increas	ed from 27°C to 927°C.	The root mean square speed of its			
	molecules becomes:						
	a) twice	b) halved		•			
27)	Hydrogen may be li on the Fahrenheit so	=	ler a pressure of 20 atmo	ospheres. What is this temperature			
	a) -91°F	b) -191°F	c) -291°F	d) -391°F			
28)	The graph between	length and time period	d of a simple pendulum	is:			
	a) a straight-line	b) a circle	c) a parabola	d) a hyperbola			
29) A semiconductor device is connected in a series circuit with a battery and a resistance. A connected in a series circuit with a battery and a resistance.							
	found to pass throug	gh the circuit. If the po	plarity of the battery is r	eversed, the current drops almost to			
	zero. The device ma	ıy be:					
	a) a p-type semicone	ductor	b) a n-type semicone	ductor			
	c) a p-n junction		d) an intrinsic semic	conductor			
30)	$\lim_{x\to\infty} x \cos\left(\frac{\pi}{4x}\right) \cdot \sin$	$\left(\frac{x}{\cdot}\right) =$					
	$x \to \infty$ (4x) a) 1		c) $\pi/4$	d) 0			
21)	,	, <u>,</u>	c) n/ 1	u) 0			
31)	If $y = \tan^{-1}(\cot x)$						
	a) $-\csc^2 x$	b) $\sin^2 x$	c) $-\cot x \cdot \csc x$ = $2x^3 - 9x^2 + 12x - 2$	d) -1			
32)		th the function $f(x) =$	$=2x^3-9x^2+12x-2$	0 is decreasing in:			
		b) $(-\infty, 2]$	c) [1, ∞)	d) (1, 2)			
33)	$\int \frac{dx}{x(1+\log x)} =$						
•	a) $\log(\log x) + c$	$h) \log x \perp c$	$a > (1 \perp \log x) + a$	d) $\log(1 + \log x) + c$			
2.43			c_{j} (1 \pm 10g x_{j} \pm t	$a_j \log(1 + \log x) + c$			
34)	$\int_0^1 \left(\sin^{-1} \frac{2x}{1+x^2} + 2 \cos^{-1} \frac{2x}{1+x^2} \right) dx$	$\cot^{-1} x dx =$					
	a) $\pi/6$	b) π	c) 2π	d) 3π			

35)	If when $f(x) = 3x^2 - $ a) -3		(x-2), the remainder is c) 3	
2.5		6	c) 3	d) 5
36)	If $y = 1 + \frac{x^2}{1!} + \frac{x^4}{2!} + \frac{x}{3}$	$\frac{1}{3!} + \cdots$, then $x =$		
	a) e^{-y}	b) <i>e</i> ^{<i>y</i>}	c) $\sqrt{\log y}$	d) $\frac{e^y}{2}$
37)	$(1+i)^6 + (1-i)^6 =$			2
,	a) 0	b) 2 ⁷	c) 2 ⁶	d) 1
38)	If $A = \begin{bmatrix} 2 & -1 \\ -3 & 4 \end{bmatrix}$, then			
20)	0 1		г2 31	r2 11
	a) $\begin{bmatrix} 4 & 3 \\ 1 & 2 \end{bmatrix}$	b) $\begin{bmatrix} 1 & 1 \\ 3 & 2 \end{bmatrix}$	c) $\begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}$	$d)\begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix}$
39)	If 4 parallel lines inters	sect another set of 3 pa	arallel lines, then the n	umber of parallelograms formed
	with these lines is:			
	/	b) 9	c) 12	d) 18
40)	If $f(x) = 2\sin x$, $g(x)$	$f(x) = \cos^2 x$, then $(f + \cos^2 x)$	$(g)^{\frac{n}{3}} =$	
	a) 1	b) $\frac{2\sqrt{3}+1}{}$	c) $\sqrt{3} + \frac{1}{4}$	d) $\sqrt{3} + \frac{1}{4}$
41)	If $A = \{3^{2n} - 1 : n \in I\}$			2
4 1)		b) $A \subset B$		$d) A \cap B = \phi$
42)	,	,	,	with abscissae 1 and 3 is:
72)		b) 5	c) 4	d) 3
43)	Lines represented by 9	,	,	<i>u, s</i>
.5)	a) coincident	1 1 1 000 1	b) parallel but not coin	ncident
	c) not parallel		d) parallel	
44)	· •	ining the points in whi	, 1	$+3y = 5$ cuts the circle $x^2 +$
,	$y^2 = 26$ is:		C	-
	-	b) 10 units	c) 20 units	d) 25 units
45)	If the line $2x + y + \lambda$	is a normal to the para	abola $y^2 = -8x$, then A	$\lambda =$
	,	b) -12	c) 24	d) -24
46)	The length of latus rec			
		b) 8/9	c) 4/9	d) 9/2
47)	The locus of a point Po			
	a) line parallel to z-axi		b) plane parallel to xy	-
40)	c) line parallel to y-axi		d) line parallel to x-ax	A1S
48)	The maximum value o			4) 6
	,	b) 4 7π	c) 5	d) 6
49)	The value of \cos^{-1} (co	$\left(\frac{1}{6}\right)$ is:		
	a) $\frac{7\pi}{6}$	b) $\frac{\pi}{2}$	c) $\frac{2\pi}{3}$	d) $\frac{5\pi}{6}$
50)	1 litre of O_2 at NTP we	3	3	6
/		b) 2.85 g	c) 0.71 g	d) 2.3 g
51)	Magnetic quantum nur	, .	,	,
	a) Nuclear stability	_	b) Orbital orientation	
	c) Shape of orbital		d) Size of orbital	
52)	Hydrogen bonding is n			
	· -	b) H_2S	c) Glycerol	d) HF
53)	The oxidation number			
	·	b) +3	c) +5	d) +6
54)	Which of the following	g elements have least	_	vity?
	a) Oxygen		b) Boron	
	c) Carbon		d) Nitrogen	

<i>33)</i>	if a sait bridge is removed between the two nair cens, the voltage:				
	a) drops to zero		b) does not change		
	c) increases gradu	ally	d) decreases rapidl	y	
56)	Catalyst used in t	Catalyst used in the manufacture of sulphuric acid by contact process is:			
	a) Finely divided	iron	b) NO		
	c) N ₂ O		d) V ₂ O ₅		
57)	The chemical composition of slag formed during smelting process in the extraction of copper is:				
	a) $Cu_2S + FeS$		b) FeSiO ₃		
	c) CuFeS ₂		d) CuSiO ₃		
58)	White vitriol is:				
	a) CuSO ₄ .5H ₂ O		b) FeSO ₄ .7H ₂ O		
	c) ZnSO ₄ .7H ₂ O		d) CaSO ₄ .2H ₂ O		
59)	The reaction between ethylene and bromine is an example of:				
	a) electrophilic addition		b) electrophilic sub	b) electrophilic substitution	
	c) nucleophilic addition		d) nucleophilic sub	d) nucleophilic substitution	
60)	What type of isomerism is shown by diethyl ether and methyl propyl ether?				
	a) chain	b) functional	c) metamerism	d) position	

Section-B (2 marks)

Read the following passages and answer the questions given below (61-64):

One of the most hazardous conditions a firefighter will ever encounter is a backdraft (also known as a smoke explosion). A backdraft can occur in the hot-smoldering phase of a fire when burning is incomplete and there is not enough oxygen to sustain the fire. Unburned carbon particles and other flammable products, combined with the intense heat, may cause instantaneous combustion if more oxygen reaches the fire.

Firefighters should be aware of the conditions that indicate the possibility for a backdraft to occur. When there is a lack of oxygen during a fire, the smoke becomes filled with carbon dioxide or carbon monoxide and turns dense gray or black. Other warning signs of a potential backdraft are little or no visible flame, excessive heat, smoke leaving the building in puffs, muffled sounds, and smoke-stained windows.

Proper ventilation will make a backdraft less likely. Opening a room or building at the highest point allows heated gases and smoke to be released gradually. However, suddenly breaking a window or opening a door is a mistake, because it allows oxygen to rush in, causing an explosion.

- 61) A backdraft is a dangerous condition for firefighters mainly because
 - a) there is not enough oxygen for breathing.
 - b) the heat is extremely intense.
 - c) the smoke is dangerously thick.
 - d) an explosion occurs.
- 62) Which of the following is not mentioned as a potential backdraft warning sign?
 - a) windows stained with smoke
- b) flames shooting up from the building
- c) puffs of smoke leaving the building
- d) more intense heat than usual
- 63) To prevent the possibility of a backdraft, a firefighter should
 - a) carry an oxygen tank.
 - b) open a door to allow gases to escape.
 - c) make an opening at the top of the building.
 - d) break a window to release carbon particles.
- When compared with a hot, smoldering fire, a fire with visible, high-reaching flames
 - a) has more oxygen available for combustion.
 - b) has more carbon dioxide available for consumption.
 - c) produces more dense gray smoke.
 - d) is more likely to cause a backdraft.

65)	A ball is released from the top of a tower of the position of the ball at time T/3 is:	_	
	a) $\frac{h}{9}$ m from the ground	b) $\frac{7h}{9}$ m from the gro	ound
	c) $\frac{8h}{9}$ m from the ground	d) $\frac{17h}{18}$ m from the gr	
66)	A block is lying on an inclined plane which of friction between the block and the plane it moves along the plane will be:'	ch makes an angle of 6	50° with the horizontal. If coefficient
	a) 2.50 m/s^2 b) 5.00 m/s^2	c) $7.40 \ m/s^2$	d) $8.66 m/s^2$
67)	A flywheel is a uniform disc of mass 72 kg its kinetic energy is:	and radius 50 cm. Wh	
	,	c) 342 J	
68)	The escape velocity from the earth is about double the radius and the same mean densi	ty as that of the earth i	is:
<i>6</i> 0)		c) 5.5 km/second	*
69)	A vessel contains a liquid (density 1.2 g/cc floats with one-third of its volume immerse of the material of the sphere in g/cc is:	· ·	• • •
	a) 7.3 b) 9.4	c) 5.3	d) 14.7
70)	A steel rod and a copper rod have $(\alpha_{copper} = 18 \times 10^{-6} K^{-1}, \alpha_{steel} = 12 \times 10^{-6} K^{-1})$	the same different $10^{-6}K^{-1}$). If the length	ce in length at all temperatures of copper rod is 16 cm, the length
	of steel rod is: a) 20 cm b) 18 cm	c) 24 cm	d) 20 am
71)	a) 20 cm b) 18 cm If the pressure of an ideal gas contained in	,	,
/1)	is 2°C. The initial temperature of the gas is		by 0.5 %, the increase in temperature
	a) 27°C b) 127°C		d) 400°C
72)	An organ pipe P_1 closed at one end and vib		one and another pipe P_2 open at both
	ends vibrating in its second overtone are in		
	a) 1 b) 1/2	c) 1/3	d) 3/4
73)	A wave of light of wavelength 6000 Å falls	•	$=\sqrt{3}$). If the reflected and refracted
	rays are perpendicular to each other, the an	C	1) 000
7.4	a) 30° b) 45°	c) 60°	d) 90°
74)	A screen is placed 50 cm from a single sli the distance between first and third minima a) 1×10^{-4} m b) 2×10^{-4} m		terns is 3.0 mm, the width of slit is:
75)	A uniformly charged conducting sphere of		
73)	The charge on the sphere is:		
	a) 8.6×10^{-3} C b) 4.7×10^{-3} C	c) 5.7×10^{-3} C	d) 3.7×10^{-3} C
76)	The current in the given circuit is:	,	,
,	$R_{A} = 3\Omega$ $R_{C} = 6\Omega$		
	a) 8.31 A b) 6.82 A	c) 4.92 A	d) 2 A
77)	Through two parallel wires A and B, 10 an	,	,
•	direction. If the wire A is infinitely long an		

B, which is situated at 10 cm distance from A will be: a) 8×10^{-5} N b) 4×10^{-7} N c) 4×10^{-5} N d) 8×10^{-7} N

78)	If the wavelength of f line of series should be		series of hydrogen is 65	661 Å, the wavelength of the second	
	a) 13122 Å	b) 3280 Å	c) 4860 Å	d) 2187 Å	
79)		ne following sequence	,		
,	$CaC_2 \xrightarrow{H_2O} (A) \xrightarrow{H_2SO_4, HgSO_4} (B) \xrightarrow{LiAlH_4, [H]} (C)$				
	a) methyl alcohol		c) acetaldehyde	d) athylana	
	a) memyr arconor	b) euryr aiconor	c) acetaideflyde	d) ethylene	
80)	The IUPAC name of	$Cl - CH_2 - CH = C - CH_2$			
		CH ₂ CH	3		
	a) 1-chloro-2-ethyl-4	-hydroxybut-2-ene	b) 4-hydroxy-1-chlor	o-2-ethylbut-2-ene	
	c) 4-choro-2-ethylbut		d) 2-ethyl-4-chlorobu		
81)	_	prepared by dissolving	_	water and diluting to 500 mL is:	
	a) 1		b) 12		
	c) 13		d) 2		
82)	A metal oxide contain The formula for metal		0 cc of the metal chlor	ride vapours at STP weighs 0.72 g.	
	a) MCl		b) MCl_2		
	c) MCl_3		d) MCl_4		
83)				a standard magnesium electrode has	
	emf of 2.7 V. If the sta	andard reduction poten	tial of copper electrode	e is $+0.34$ V, then that of magnesium	
	electrode is:				
	,	b) -3.04 V	c) $+2.36 \text{ V}$	d) -2.36 V	
84)		ng order is correct rega	_		
	a) $BF_3 > NF_3 > NH_3$	9	b) $NF_3 > BF_3 > NH_3$		
	c) $NH_3 > BF_3 > NF_3$		d) $NH_3 > NF_3 > BF_3$	-	
85) A solid compound 'X' on heating gives CO ₂ gas and a residue. The residue mixed with w					
				tion 'Z' is obtained. On boiling 'Z'	
		ormed. The compound		1) 17 60	
	a) $Ca(HCO_3)_2$	b) <i>CaCO</i> ₃	c) Na_2CO_3	d) K_2CO_3	
86)				then $ \vec{a} + \vec{b} + \vec{c} $ is equal to:	
		b) $\sqrt{2}a$			
87)	In a $\triangle PQR$, $\angle R = \frac{\pi}{a}$.	If $\tan \frac{P}{a}$ and $\tan \frac{Q}{a}$ are t	he roots of the equation	$ax^2 + bx + c = 0 \ (a \neq 0)$, then:	
	a) $a + b = c$			d) b = c	
88)	The volue of lim tan x	$c-\sin x$			
00)	The value of $\lim_{x\to 0} \frac{\tan x}{x}$	$\frac{1}{x^3}$ 18.			
	a) 1/2	b) 1/3	c) 1/4	d) 1/5	
89)	If $y = \log\left(\frac{1-x^2}{1+x^2}\right)$, the	$\operatorname{en} \frac{dy}{dx} =$			
	a) $\frac{-4x^3}{1-x^4}$	b) 4	c) $\frac{-4x}{1-x^4}$	d) $\frac{4x^3}{1-x^4}$	
00)	$1-\lambda$	$1-\lambda$	1 A	$1-\lambda$	
90)		$y = y^2 = x$ where tanger			
	a) $\left(\frac{1}{2}, \frac{1}{4}\right)$	b) $\left(\frac{1}{4}, \frac{1}{2}\right)$	c) (4,2)	d) (1, 1)	
91)	$\int \frac{\cot \sqrt{x}}{2\sqrt{x}} dx =$				
	a) $2 \log \left \sin \sqrt{x} \right + c$		b) $\log \left \sin \sqrt{x} \right + c$		
	c) $\frac{1}{2} \log \left \sin \sqrt{x} \right + c$		d) $\frac{1}{2}\log \cos\sqrt{x} + c$		
92)	4	the parabola $y^2 = 4ax$	Ζ .	ectum is:	
14)	2		_	4 2	
	a) $\frac{2}{3}a^2$	b) $\frac{4}{3}a^{2}$	c) $\frac{8}{3}a^2$	d) $\frac{16}{3}a^2$	

0.0	-0.1		$(-k)^1$	0	
93)	If the term indep	endent of x in the exp	pansion of $\left(\sqrt{x} - \frac{k}{x^2}\right)^1$	is 405, then $k =$	
	a) -3	b) 3	c) ±3	d) ±5	
94)), 24, 20. The next term		
	a) 7/120	b) 120/7	c) 18	d) 7/18	
	[2 0 0)]			
95)	$ \text{If } A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} $), then $A^5 =$			
	LO 0 2	2]	-) O A	J) 1 C A	
	a) 2A	b) 4A	c) 8A	d) 16A	
96)	If $f: R \to R$ is de	fined by $f(x) = \frac{1}{2-3}$	c) 8A $\frac{1}{\cos x}$ for each $x \in R$, the	nen the range of f is:	
	a) $\left[\frac{1}{3}, 1\right]$	b) $\left(\frac{1}{3},1\right)$	c) (1, 2)	d) [1,2]	
97)			gle between the lines 3	3x - 4y + 10 = 0 and $5x - 12$	2y - 10 =
		rigin does not lie is:		·	
	$^{\circ}$		b) $4x - 7y +$	b) $4x - 7y + 5 = 0$	
	c) $4x + 7y + 5 =$	= 0	d) $7x - 4y + 9$	d) $7x - 4y + 90 = 0$	
98)	If the circles x^2	$+y^2 + 2x - 8y + 8$	$3 = 0$ and $x^2 + y^2 + 1$	0x - 2y + 22 = 0 touch extern	nally, then
			at the point of contact		-
	a) $4x + 3y - 7 =$	= 0	b) $4x + 3y + 7$	7 = 0	
	c) $3x + 4y - 7 =$			d) $3x + 4y + 7 = 0$	
99) If $(\pm 1,0)$ and $(\pm 2,0)$ are respectively the foci and vertices of an ellipse, then the lengt				of an ellipse, then the length of	f its minor
	axis is:		_	_	
	a) 2	,	c) $2\sqrt{3}$		
100)		f A, B, C, D are (2, 3, 3)	(3, 5, -3), (1, 2, 3)	and $(3, 5, 7)$ respectively, then	projection
	of AB on CD is:				
	a) 0	b) $\sqrt{3}$	c) 2	d) 4	
			Thank You!!!!!!		