

INSTITUTE OF ENGINEERING

Model Entrance Exam

(Set-8 Solutions)

Instructions:

There are 100 multiple-choice questions, each having four choices of which only one choice is correct.

Section-A (1 marks)

1) a
2) a
3) b
4) b
5) d
6) b
7) c
8) d
9) d
10) a
11) c
12) c
13) b $\quad F=B i l \sin \theta$
$B=\frac{F}{i l \sin \theta}=\frac{\left[M L T^{-2}\right]}{[A][L]}=\left[M T^{-2} A^{-1}\right]$
14) b
15) b At highest point, horizontal component of velocity only acts and acceleration due to gravity is vertically downward.
16) $\mathrm{b} \quad a=\omega^{2} R$
$\omega=\sqrt{\frac{a}{r}}=\sqrt{\frac{9.8}{0.2}}=\sqrt{49}=7 \mathrm{rad} / \mathrm{s}$
17) b On inclination, vertical height h of liquid remains same.

$$
l \cos \alpha=h, \cos \alpha<l
$$

$$
\therefore l>h
$$

18) c
19) c
20) c
21) c
22) a
23) b
24) c
25) a
26) a

It does not intercept the earth's magnetic lines of force. Hence, no emf will be induced in it.
$C=\sqrt{\frac{3 R T}{M}} \propto \sqrt{T}$
$C=\sqrt{\frac{927+273}{27+273}} . C_{0}=\sqrt{4} C_{0}=2 C_{0}$
27) d $\quad \frac{C}{5}=\frac{F-32}{9}$
$-\frac{235}{5}=\frac{F-32}{9}$
$F=-391^{\circ} F$
28) c The time period of a simple pendulum is:
$T=2 \pi \sqrt{\frac{l}{g}}$
On squaring both sides,
$T^{2}=\frac{4 \pi^{2} l}{g}$
$T^{2} \propto l$
So, the graph between time period T and length 1 of a pendulum is a parabola.
29) c When polarity of the battery is reversed, the P-N junction becomes reverse biased so no current flows.
30) c $\quad \lim _{x \rightarrow \infty} x \cos \left(\frac{\pi}{4 x}\right) \cdot \sin \left(\frac{x}{4 \pi}\right)=\lim _{x \rightarrow \infty} \cos \left(\frac{\pi}{4 x}\right) \cdot \sin \left(\frac{\frac{\pi}{4 x}}{\frac{\pi}{4 x}}\right) \cdot \frac{\pi}{4}=1 \cdot 1 \cdot \frac{\pi}{4}=\frac{\pi}{4}$
31) d $y=\tan ^{-1}(\cot x)$
$y=\tan ^{-1}\left(\tan \left(\frac{\pi}{2}-x\right)\right)=\frac{\pi}{2}-x$
$\frac{d y}{d x}=0-1=-1$
32) d
$f(x)=2 x^{3}-9 x^{2}+12 x-20$
$f^{\prime}(x)=6 x^{2}-18 x+12=6(x-1)(x-2)$
For $1<x<2, f^{\prime}(x)<0$
Thus, $f(x)$ is decreasing in $(1,2)$.
33) d $\int \frac{d x}{x(1+\log x)}=\int \frac{1 / x}{1+\log x} d x=\log (1+\log x)+c$
34) $\mathrm{b} \quad \int_{0}^{1}\left(\sin ^{-1} \frac{2 x}{1+x^{2}}+2 \cot ^{-1} x\right) d x=\int_{0}^{1}\left(2 \tan ^{-1} x+2 \cot ^{-1} x\right) d x=2 \int_{0}^{1} \frac{\pi}{2} d x=2 \cdot \frac{\pi}{2}=\pi$
35) $\mathrm{b} \quad f(2)=3$
$3(2)^{2}-2(2)+k=3$
$k=-5$
36) c $y=1+\frac{x^{2}}{1!}+\frac{x^{4}}{2!}+\frac{x^{6}}{3!}+\cdots$
$y=e^{x^{2}}$
$\log y=x^{2}$
$x=\sqrt{\log y}$
37) a $(1+i)^{6}+(1-i)^{6}=\left((1+i)^{2}\right)^{3}+\left((1-i)^{2}\right)^{3}=(2 i)^{3}+(-2 i)^{3}=8 i^{3}-8 i^{3}=0$
38) $\mathrm{b} \quad A=\left[\begin{array}{cc}2 & -1 \\ -3 & 4\end{array}\right]$

Adj. $A=\left[\begin{array}{ll}4 & 3 \\ 1 & 2\end{array}\right]^{T}=\left[\begin{array}{ll}4 & 1 \\ 3 & 2\end{array}\right]$
39) d To form a parallelogram, we require two parallel lines from each set. Hence, number of parallelograms $={ }^{4} \mathrm{C}_{2} \times{ }^{3} \mathrm{C}_{2}=18$
40) c $\quad f(x)=2 \sin x, g(x)=\cos ^{2} x$
$(f+g) \frac{\pi}{3}=f\left(\frac{\pi}{3}\right)+g\left(\frac{\pi}{3}\right)=2 \sin \frac{\pi}{3}+\cos ^{2}\left(\frac{\pi}{3}\right)=\sqrt{3}+\frac{1}{4}$
41) b $\quad 3^{2 n}-1=\left(3^{2}\right)^{n}-1=(1+8)^{n}-1$ which is a multiple of 8 .

Hence, $A \subset B$.
42) a When $x=1, y=1^{2}+2 \times 1=3$

When $x=3, y=3^{2}+2 \times 3=15$
So, slope of line joining these points $=\frac{15-3}{3-1}=6$
43) b Given equation can be written as:
$(3 x+y)^{2}-(2)^{2}=0$
$(3 x+y+2)(3 x+y-2)=0$
$3 x+y+2=0,3 x+y-2=0$
Which are parallel but not coincident.
44) b $\quad 4 x+3 y=5$
$y=-\frac{4}{3} x+\frac{5}{3}$

Note:

The length of the intercept cut off from the line $y=m x+c$ by the circle $x^{2}+y^{2}=a^{2}$ is:
$d=2 \sqrt{a^{2}-\frac{c^{2}}{1+m^{2}}}$
\therefore Required length $=2 \sqrt{26-\frac{25 / 9}{1+16 / 9}}=2 \sqrt{26-1}=2 \times 5=10$ units
45) c Given, $2 x+y+\lambda=0$
$y=-2 x-\lambda$
Using condition of normal,
$c=-2 a m-a m^{3}$
$-\lambda=-2(-2)(-2)+2(-2)^{3}$
$-\lambda=-24$
$\lambda=24$
46) a $9 y^{2}-4 x^{2}=36$
$\frac{x^{2}}{9}-\frac{y^{2}}{4}=-1$
L.R. $=\frac{2 a^{2}}{b}=\frac{18}{2}=9$
47) b Since, $z=0$ represents the xy-plane. So, $z=c$ represents a plane parallel to xy-plane.
48) b $\quad 12 \sin \theta-9 \sin ^{2} \theta=-\left[9 \sin ^{2} \theta-12 \sin \theta\right]=-\left[(3 \sin \theta)^{2}-2.3 \sin \theta \cdot 2+2^{2}\right]+2^{2}=-(3 \sin \theta-2)^{2}+4$
\therefore Maximum value of $12 \sin \theta-9 \sin ^{2} \theta=4$
49) d $\cos ^{-1}\left(\cos \frac{7 \pi}{6}\right)=\cos ^{-1}\left(\cos \left(2 \pi-\frac{5 \pi}{6}\right)\right)=\cos ^{-1}\left(\cos \frac{5 \pi}{6}\right)=\frac{5 \pi}{6}$
50) a 22.4 L of O_{2} at $\mathrm{NTP}=32 \mathrm{~g}$

1 L of O_{2} at $\mathrm{NTP}=\frac{32}{22.4}=1.43 \mathrm{~g}$
51) b Principal quantum number (n) describes size of orbital, average distance of nucleus and total energy of the electron.

Azimuthal quantum number (l) gives the orbit, sub-shells or sub-energy level in which the electron is located.
Magnetic quantum number (m) describes the orientation of sub-shells.
Spin quantum number (s) describes the spin of electrons.
52) b Conditions of H-bonding:
i) The molecule must possess a higher electronegative atom such as F, O or N directly linked to H -atom.
ii) Size of electronegative atom should be small.
53) d Since the charge of the ion is -2 , so, the sum of oxidation number of all individual atoms is equal to -2 .
$2 x+7(-2)=-2$
$2 x=12$
$x=6$
54) b In a group, electronegativity decreases from top to bottom. In a period, electronegativity increases from left to right.
55) a The function of a salt bridge in an electrolytic cell is to maintain electrical neutrality in solution and prevent voltage drop. Once the salt bridge is removed, the voltage drops to zero and current will stop flowing in the circuit of the cell.
56) d
57) b During smelting
$2 \mathrm{FeS}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{FeO}+2 \mathrm{SO}_{2} \uparrow$
$\mathrm{FeO}+\mathrm{SiO}_{2} \rightarrow \mathrm{FeSiO}_{3}$ (slag)
58) c $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$: Blue vitriol
$\mathrm{FeSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$: Green vitriol
59) a

60) c $\mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{O}-\mathrm{C}_{2} \mathrm{H}_{5}$ and $\mathrm{CH}_{3}-\mathrm{O}-\mathrm{C}_{3} \mathrm{H}_{7}$ are metamers. So, the type of isomerism is metamerism.

Section-B (2 marks)

61) d The first two sentences of the passage indicate that a backdraft is dangerous because it is an explosion. The other choices are dangers, but they do not define a backdraft.
62) b The second paragraph indicates that there is little or no visible flame with a potential backdraft. The other choices are listed at the end of the second paragraph as warning signs of a potential backdraft.
63) c This is stated in the last paragraph. Choice a is not mentioned in the passage. The other choices would be useless or harmful.
64) a The passage indicates that hot, smoldering fires have little or no visible flame and insufficient oxygen. It can reasonably be inferred, then, that more oxygen would produce more visible flames.
65) c $\quad h=\frac{1}{2} g T^{2}$
$h^{\prime}=\frac{1}{2} g\left(\frac{T}{3}\right)^{2}$
Height from ground $=h-h^{\prime}=h=\frac{1}{2} g T^{2}-\frac{1}{2} g\left(\frac{T}{3}\right)^{2}=\frac{1}{2} g T^{2}\left(1-\frac{1}{9}\right) h=\frac{8}{9} h$
66) c

$m g \sin \theta-f=m a$
$m g \sin \theta-\mu_{k} m g \cos \theta=m a$
$a=g \sin \theta-\mu_{k} g \cos \theta=\left(\sin \theta-\mu_{k} \cos \theta\right) g=\left(\frac{\sqrt{3}}{2}-0.25 \times \frac{1}{2}\right) \times 10=7.4 \mathrm{~m} / \mathrm{s}^{2}$
67) b
$K . E .=\frac{1}{2} I \omega^{2}=\frac{1}{2}\left(\frac{1}{2} M R^{2}\right)(2 \pi n)^{2}=\pi^{2} M R^{2} n^{2}=(3.14)^{2} \times 72 \times(0.50)^{2} \times\left(\frac{72}{60}\right)^{2}=242 J$
68) a $\quad v_{e}=\sqrt{\frac{2 G M}{R}}=\sqrt{\frac{2 G \times \frac{4}{3} \pi R^{3} \rho}{R}}=\sqrt{\frac{8}{3} G \pi R^{2} \rho}=R \sqrt{\frac{8}{3} G \pi \rho} \propto R$
$\frac{v_{p}}{v_{e}}=\frac{R_{p}}{R_{e}}=2$
$v_{p}=2 v_{e}=22 \mathrm{~km} /$ second
69) $\mathrm{c} \quad$ Weight of sphere $=$ Weight of liquid displaced
$V \rho g=\frac{V}{3} \times 13.5 g+\frac{2 V}{3} \times 1.2 g$
$\rho=\frac{13.5+1.2}{3}=\frac{15.9}{3}=5.3$
70) c Condition of no difference in length of two rods with rise of temperature is:
$L_{1} \alpha_{1}=L_{2} \alpha_{2}$
$L_{2}=\frac{L_{1} \alpha_{1}}{\alpha_{2}}=\frac{16 \times 18 \times 10^{-6}}{12 \times 10^{-6}}=24 \mathrm{~cm}$
71) b In a closed vessel, $T=$ constant
$\frac{P_{1}}{T_{1}}=\frac{P_{2}}{T_{2}}$
$\frac{P_{1}}{T_{1}}=\frac{\left(P_{1}+\frac{0.5}{100} P_{1}\right)}{T_{1}+2}$
$\frac{T_{1}+2}{T_{1}}=1+\frac{0.5}{100}$
$1+\frac{2}{T_{1}}=1+\frac{0.5}{100}$
$\frac{2}{T_{1}}=\frac{0.5}{100}$
$T_{1}=400 \mathrm{~K}=127^{\circ} \mathrm{C}$
72) b First overtone of closed pipe $P_{1}=3\left(\frac{v}{4 l_{1}}\right)$

Second overtone of open pipe $P_{2}=3\left(\frac{v}{2 l_{2}}\right)$
They are in resonance. So,
$3\left(\frac{v}{4 l_{1}}\right)=3\left(\frac{v}{2 l_{2}}\right)$
$\frac{l_{1}}{l_{2}}=\frac{1}{2}$
73) c $\quad \mu=\frac{\sin i}{\sin r}=\frac{\sin i}{\sin \left(90^{\circ}-i\right)}=\tan i \quad\left[\because i+r=90^{\circ}\right]$
$\tan i=\sqrt{3}$
$i=60^{\circ}$
74) b The position of $\mathrm{n}^{\text {th }}$ minima in the diffraction pattern is:
$x_{n}=\frac{n \lambda D}{d}$
$x_{3}-x_{1}=(3-1) \frac{\lambda D}{d}=\frac{2 \lambda D}{d}$
$d=\frac{2 \lambda D}{x_{3}-x_{1}}=\frac{2 \times 0.50 \times 6000 \times 10^{-10}}{3 \times 10^{-3}}=2 \times 10^{-4} \mathrm{~m}$
75) d $\quad r=\frac{d}{2}=\frac{4.4}{2}=2.2 \mathrm{~m}$

Charge on the sphere, $q=\sigma \times 4 \pi r^{2}=60 \times 10^{-6} \times 4 \times \frac{22}{7} \times(2.2)^{2}=3.7 \times 10^{-3} \mathrm{C}$
76) d 6Ω and 6Ω are in series, so effective resistance is 12Ω which is in parallel with 3Ω, so
$\frac{1}{R}=\frac{1}{3}+\frac{1}{12}$
$R=\frac{36}{15}$
$\therefore I=\frac{V}{R}=\frac{4.8 \times 15}{36}=2 \mathrm{~A}$
77) a Force per unit length, $\frac{F}{l}=\frac{\mu_{0}}{4 \pi} \cdot \frac{2 i_{1} i_{2}}{a}$
$F=\frac{\mu_{0}}{4 \pi} \cdot \frac{2 i_{1} i_{2}}{a} \times l=10^{-7} \times \frac{2 \times 10 \times 2}{\left(10 \times 10^{-2}\right)} \times 2=8 \times 10^{-5} \mathrm{~N}$
78) c For Balmer series, $n_{1}=2, n_{2}=3$ for $1^{\text {st }}$ line and $n_{2}=4$ for second line.
$\frac{\lambda_{1}}{\lambda_{2}}=\frac{\left(\frac{1}{2^{2}}-\frac{1}{4^{2}}\right)}{\left(\frac{1}{2^{2}}-\frac{1}{3^{2}}\right)}=\frac{3 / 16}{5 / 36}=\frac{27}{20}$
$\lambda_{2}=\frac{20}{27} \lambda_{1}=\frac{20}{27} \times 6561=4860 \AA$
79) $\mathrm{b} \quad \mathrm{CaC}_{2} \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{HC} \equiv \mathrm{CH} \xrightarrow{\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{HgSO}_{4}} \mathrm{CH}_{3} \mathrm{CHO} \xrightarrow{\mathrm{LiAlH}_{4}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
80) c
81) c Molarity $=\frac{\text { No.of moles }}{\text { Volume in litre }}=\frac{\frac{2}{40}}{\frac{500}{1000}}=\frac{1}{10}$
$\mathrm{NaOH} \rightleftharpoons \mathrm{Na}^{+}+\mathrm{OH}^{-}$
$1 \quad 1 \quad 1$
$0.1 \mathrm{M} . \quad 0.1 \mathrm{M} \quad 0.1 \mathrm{M}$
$p^{O H}=-\log \left[O H^{-}\right]=-\log [0.1]=-\log \left[10^{-1}\right]=1$
$p^{H}=14-p^{O H}=14-1=13$
82) c $\quad E_{\text {metal }}=\frac{W_{\text {metal }}}{W_{\text {oxygen }}} \times 8=\frac{70}{30} \times 8=18.66$

Molecular weight of metal chloride $=\frac{0.72}{100} \times 22400=161.28$
Valency of metal $=\frac{\text { Molecular weight of metal chloride }}{\text { Equivalent weight of metal chloride }}=\frac{161.28}{18.66+35.5}=3$
$M C l_{3}$ is a formula of metal chloride.
83) d Mg lies above Cu in electrochemical series and hence Cu acts as cathode.
$E^{0}{ }_{\text {cell }}=E^{0}{ }_{C u^{2+} / \mathrm{Cu}}-E^{0}{ }_{M g^{2+} / \mathrm{Mg}}$
$2.70=0.34-E^{0}{ }_{M g^{2+}}{ }^{2+}{ }_{M g}$
$E^{0}{ }_{M g}{ }^{2+}{ }_{M g}=0.34-2.70=-2.36 \mathrm{~V}$
84) d In NH_{3}, charge from three bonds was moving towards nitrogen in the direction of lone pairs. In NF_{3} and BF_{3}, due to structure, pyramidal and trigonal planar, NF_{3} has more dipole moment. The resultant dipole for BF_{3} is zero.
Hence, the sequence is:
$N H_{3}>N F_{3}>B F_{3}$
85) b $\mathrm{CaCO}_{3} \xrightarrow{\Delta} \mathrm{CaO}+\mathrm{CO}_{2}$

X Residue
$\mathrm{CaO}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}$
$\mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}$
$\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2} \xrightarrow{\Delta} \mathrm{CaCO}_{3}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
86) c $\quad|\vec{a}+\vec{b}+\vec{c}|^{2}=a^{2}+b^{2}+c^{2}+2(\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a})=a^{2}+a^{2}+a^{2}+2(0)=3 a^{2}$
$\therefore|\vec{a}+\vec{b}+\vec{c}|=\sqrt{3} a$
87) $\mathrm{a} \quad P+Q=\frac{\pi}{2}$
$\frac{P}{2}+\frac{Q}{2}=\frac{\pi}{4}$
$\tan \left(\frac{P}{2}+\frac{Q}{2}\right)=\tan \frac{\pi}{4}$
$\frac{\tan \frac{P}{2}+\tan \frac{Q}{2}}{1-\tan \frac{P}{2} \cdot \tan \frac{Q}{2}}=1$
$\frac{-\frac{b}{a}}{1-\frac{c}{a}}=1$
$-b=a-c$
$a+b=c$
88) a
$\lim _{x \rightarrow 0} \frac{\tan x-\sin x}{x^{3}}=\lim _{x \rightarrow 0} \frac{\sin x(1-\cos x)}{x^{3} \cos x}=\lim _{x \rightarrow 0} \frac{\sin x}{x} \times \frac{1-\cos x}{x^{2}} \times \frac{1}{\cos x}$
$=1 \times \lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}} \times \frac{1}{1}$
$=\lim _{x \rightarrow 0} \frac{\sin x}{2 x} \quad$ [By L'Hospital rule]
$=\lim _{x \rightarrow 0} \frac{\cos x}{2} \quad$ [By L'Hospital rule]
$=\frac{1}{2}$
89) c
$y=\log \left(\frac{1-x^{2}}{1+x^{2}}\right)=\log \left(1-x^{2}\right)-\log \left(1+x^{2}\right)$
$\frac{d y}{d x}=\frac{1}{1-x^{2}} \cdot(-2 x)-\frac{1}{1+x^{2}} \cdot(2 x)=(-2 x) \frac{\left(1+x^{2}+1-x^{2}\right)}{1-x^{4}}=\frac{-4 x}{1-x^{4}}$
90) b
$y^{2}=x \quad$----- (1)
Diff. both sides w.r.t. x , we get,
$2 y \frac{d y}{d x}=1$
$\frac{d y}{d x}=\frac{1}{2 y}$
$\tan \frac{\pi}{4}=\frac{1}{2 y}$
$y=\frac{1}{2}$
When $y=\frac{1}{2}$, then from (1),
$x=\left(\frac{1}{2}\right)^{2}=\frac{1}{4}$
\therefore Required point $=\left(\frac{1}{4}, \frac{1}{2}\right)$
91) b $\quad \int \frac{\cot \sqrt{x}}{2 \sqrt{x}} d x$

Put $\sqrt{x}=z$
$\frac{d z}{d x}=\frac{d(\sqrt{x})}{d x}=\frac{1}{2 \sqrt{x}}$
$d z=\frac{1}{2 \sqrt{x}} d x$
$\therefore \int \frac{\cot \sqrt{x}}{2 \sqrt{x}} d x=\int \cot z d z=\log |\sin z|+c=\log |\sin \sqrt{x}|+c$
92) b

$A=\int_{0}^{a} \sqrt{4 a x} d x=\frac{4}{3} a^{2}$
93) c $\quad T_{r+1}={ }^{10} \mathrm{C}_{\mathrm{r}}(\sqrt{x})^{10-r} \cdot\left(\frac{-k}{2}\right)^{r}={ }^{10} \mathrm{C}_{\mathrm{r}}(-k)^{r} \cdot x^{\frac{10-5 r}{2}}$

Which does not contain x if
$\frac{10-5 r}{2}=0$
$r=2$
$\therefore T_{2+1}=405$
$\Rightarrow{ }^{10} \mathrm{C}_{2}(-k)^{2}=405$
$k^{2}=9$
$k= \pm 3$
94) b $30,24,20$ are in HP
$\therefore \frac{1}{30}, \frac{1}{24}, \frac{1}{20}$ are in AP
Common difference of A.P. $=\frac{1}{24}-\frac{1}{30}=\frac{1}{120}$
\therefore Next term of AP $=\frac{1}{20}+\frac{1}{120}=\frac{7}{120}$
Thus, next term of HP $=\frac{120}{7}$
95) d
$A=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right]=2\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=2 I$
$A^{5}=2^{5} I=32 I=16(2 I)=16 A$
96) a Since, $-1 \leq \cos 3 x \leq 1$
$1 \geq-\cos 3 x \geq-1$
$3 \geq 2-\cos 3 x \geq 1$
$\frac{1}{3} \leq \frac{1}{2-\cos 3 x} \leq 1$
\therefore Range of f is $\left[\frac{1}{3}, 1\right]$
97) a Given lines are:
$3 x-4 y+10=0$
$-5 x+12 y+10=0$
Now equation of required bisector is:
$\frac{3 x-4 y+10}{\sqrt{9+16}}=-\frac{-5 x+12 y+10}{\sqrt{25+114}}$
$13(3 x-4 y+10)+5(-5 x+12 y+10)=0$
$7 x+4 y+90=0$
98) b Equation of common tangents at their point of contact is:
$S_{1}-S_{2}=0$
$x^{2}+y^{2}+2 x-8 y+8-x^{2}-y^{2}-10 x+2 y-22=0$
$-8 x-6 y-14=0$
$4 x+3 y+7=0$
99) c Given, $a e=1, a=2$
$e=\frac{1}{2}$
Also, $a e=\sqrt{a^{2}-b^{2}}$
$1=4-b^{2}$
$b^{2}=3$
$b=\sqrt{3}$
\therefore Minor axis $=2 b=2 \sqrt{3}$
100) a Dr's of CD are: 3-1, 5-2, 7-3 i.e., 2, 3, 4
\therefore Projection $=\frac{1}{\sqrt{4+9+16}}[2(3-2)+3(5-3)+4(-3+1)]=\frac{1}{\sqrt{29}}(2+4-6)=0$

