IOE MODEL ENTRANCE EXAM 2023 SET 10

BEATS ENGINEERING

INSTITUTE OF ENGINEERING

Model Entrance Exam

<u>(Set-10)</u>

Instructions:

There are 100 multiple-choice questions, each having four choices of which only one choice is correct.

Date: 2080/04/20 (August-05) Duration: 2 hours Time: 8 AM – 10 AM

Section-A (1 marks)

1)	We on pice	nics whenever we hav	e free time.				
	a) went	b) were going	c) go	d) are going			
2)	I must not shout, _	?					
	a) need I	b) shouldn't I	c) can't I	d) must I			
3)	Many people are ir	nterested bette	r jobs.				
	a) to finding	b) in finding	c) for finding	d) of finding			
4)	She her pe	n when she was walki	ng to school.				
	a) dropped	b) has dropped	c) had dropped	d) was dropping			
5)	He talked about the competition as if he part in it.						
	a) had taken	b) took	c) takes	d) has taken			
6)	Hold the object	arm's length.					
	a) at	b) in	c) by	d) on			
7)	Diminutive (Synonym):						
	a) immense	b) colossal	c) obstinate	d)	miniature		
8)	Jovial (Antonym) :						
	a) gloomy	b) amiable	c) buoyant	d) convivial			
9)	The correct passive	e form of the following	g sentence is:				
	"They have spotted	d me in the crowd."					
	a) I am spotted by	them in the crowd.					
	b) I will have been	b) I will have been spotted by them in the crowd.					
	c) I would have be	en spotted by them in	the crowd.				
	d) I have been spot	ted by them in the cro	owd.				
10)	"To give somebod	y the cold shoulder" n	neans:				
	a) to snub him		b) to mollify him				
	c) to humiliate him d) to receive him warmly						
11)	The correct word f	or the transcription /b	u'keı/ is:				
	a) booking	b) bookie	c) bouquet	d) book			
12)	Summer is my favo	orite season. The word	d 'favorite' is a/an:				
	a) adverb	b) adjective	c) verb	d) preposition			
13)	If $\lim \frac{\sin px}{2} = 4$, the second se	nen 'p' equals:					
- /	$x \to 0 \tan 3x$	1 0	-) 10	A (L			
	a) o	D)9	C) 12	d) 4			
14)	If $y = \log \sqrt{\tan x}$,	then the value of $\frac{dy}{dx}$ at	$x = \frac{\pi}{4}$ is:				
	a) 1	b) 2	c) 1/2	d) 0			
15)	The minimum valu	The minimum value of 9 tan ² θ + 4 cot ² θ is:					
	a) 12	b) 13	c) 5	d) 36			
16)	$\int e^x (\cos x - \sin x)$	dx =					
	a) $e^x \sin x + c$		b) $e^x \cos x + c$				
	c) $e^x \log x + c$		d) $e^x \cot x + c$				
17)	$\int_{1}^{\pi/2} \frac{\cos x}{\cos x} dx =$,				
17)	$J_{\pi/6 \ sin^2 x} ux =$	• • •					
	a) 0	b) 1	c) -1	d) 2			
18)	If α , β are roots of	$x^2 - p(x+1) - q =$: 0, then the value of (a	$(\beta + 1)(\beta + 1) =$			
	a) <i>q</i> – 1	b) $4 + q$	c) $1 + q$	d) 1 − <i>q</i>			
19)	If $x = 1 + \frac{2}{1!} + \frac{4}{2!} + \frac{8}{2!} + \cdots$, then \sqrt{x} equals:						
	a) \sqrt{e}	b) <i>e</i>	c) e^2	d) e^{-1}			
20)	The 19 th term of t	he progression 2 6 1(86 from end is	.,			
20)	a) 10	h) 14	c) 18	d) 26			
	m/ 10	0/11	v , i v	G, <u>-</u> O			

21)	$\left(\cos\frac{\pi}{2}+i\sin\frac{\pi}{2}\right)^{-3}=$				
	a) 1 b) -1	c) i	d) -i		
22)	If for matrices A B: $AB = A$ and $BA = B$	then A^2 equals:			
22)	a) I b) A	c) B	0 (b		
23)	The number of ways to arrange the letters of	f the word 'GARDEN	' with vowels in alphabetical order		
23)	is.		with vowers in alphabetical order		
	a) 360 b) 240	c) 120	d) 480		
24)	The range of $f(x) = \cos x - \sin x$ is:	c) 120	u) 400		
27)	The range of $f(x) = \cos x$ sin x is.	$(\pi \pi)$			
	a) $(-1, 1)$ b) $[-1, 1)$	c) $\left(-\frac{1}{2}, \frac{1}{2}\right)$	d) $[-\sqrt{2}, \sqrt{2}]$		
25)	A line joining the points (1, 2, 0) and (4, 13	3, 5) is perpendicular to	the plane. Then the coeff. of x, y,		
	z in the equation of the plane respectively is:				
	a) 5, 15, 5 b) 3, 11, 5	c) −3, −11, 5	d) 5, 3, 2		
26)	The cartesian form of the polar equation θ =	$= \tan^{-1} 3$ is:			
	a) $x = 2y$ b) $y = 3x$	c) $x = 4y$	d) $y = 4x$		
27)	If the graphs of $x^2 = 4(y+9)$ and $x + ky$	= 6 intersect on x-axis	, then $k =$		
	a) 0 b) 6	c) 4	d) any real number		
28)	The equation $xy = 0$ in 3D space represents	8:			
	a) a pair of straight-line	b) a plane			
	c) a pair of planes at right angle	d) a pair of parallel lin	nes		
29)	The one which does not represent hyperbola	is:			
	a) $xy = 1$	b) $x^2 - y^2 = 5$			
	c) $(x-1)(y-3) = 3$	d) $x^2 - y^2 = 0$			
30)	The two vectors $\vec{a} = 2\hat{i} + \hat{i} + 3\hat{k}$, $\vec{b} = 4\hat{i} - \hat{k}$	$\lambda \hat{i} + 6\hat{k}$ are parallel, if	$\lambda =$		
20)	a) 2 b) -3	c) 3	d) -2		
31)	If $4\sin^{-1}x + \cos^{-1}x = \pi$, then x is equal to	to:	() 2		
/	a) 0 b) $1/2$	c) $\sqrt{3}/2$	d) $1/\sqrt{2}$		
22)	If for real values of $y_{0} = x_{0} + \frac{1}{2}$ then	0) 10/2			
52)	If for real values of x, $\cos \theta = x + \frac{1}{x}$, then.				
	a) θ is an acute angle	b) θ is a right angle			
	c) θ is an obtuse angle d) no value of θ is possible				
33)	Oxidation number of nitrogen in NH_4NO_3 is	S:			
2.1	a) -3 b) +5	c) -1	d) +1		
34)	The total number of electrons present in Cl	atom having $l = 0$ is:			
	a) 4 b) 6	c) 5	d) 11		
35)	As the s-character of hybridized orbital incr	eases, the bond angle:			
	a) increases	b) decreases			
20	c) remains same	d) becomes zero			
36)	The substance which causes permanent hard	iness in water is:			
	a) NaCl	b) NaHCO ₃			
27)		d) K_2SO_4			
37)	When concentrated H_2SU_4 is added to dry K	NO_3 , brown fumes ev	olve. These fumes are of:		
20)	a) SO_2 b) SO_3	c) NO_2	d) NU		
38)	Bordeaux mixture is:				
	a) $LuSO_4 + La(OH)_2$	b) $La_3(PO_4)_2 + Las$	iO_3		
	c) $CaCN_2 + C$ d) $CuFeS_2 + FeS_2$				
39)	Which of the following is most soluble in w	ater?			
	a) $Mg(OH)_2$ b) $Sr(OH)_2$	c) $La(OH)_2$	d) $Ba(OH)_2$		
40)	which of the following intermediates have t	the complete octet arou	ind the carbon atom?		
	a) carbonium ion	b) carbanion			
	c) free radical	a) carbene			

41) CH_3CH_2OH and $CH_3 - O - CH_3$ are:						
,	a) functional isomers	b) chain isomers				
	c) metamers	d) position isomers				
42)	In which of the following, 1 Faraday of electricity will liberate 1/2 gm atom of the metal?					
	a) AlCl ₃	b) FeCl ₃	-			
	c) $CuSO_4$	d) NaCl				
43)	Which of the following has highest electron	negativity?				
,	a) Cl b) N	c) O	d) S			
44)	A man in a train moving with a constant ve	locity drops a ball on t	the platform. The path of the ball as			
	seen by an observer standing on the platform is:					
	a) straight line	b) a circle				
	c) a parabola	d) helix				
45)	Kinetic energy of a body of mass 10 g and a	momentum 500 gcm/s	is equal to:			
	a) 1.25×10^3 ergs	b) 1.25×10^4 ergs				
	c) 1.25×10^3 J	d) 50,000 ergs				
46)	Which of the following statement is correct?					
	a) the value of g is same at all places					
	b) the value of g is more at the equator than	at the poles				
	c) the value of g is more at the poles than at	t the equator				
	d) the value of g is maximum at the center of	of the earth				
47)	The force necessary to pull a circular plate of	of radius 5 cm from the	e surface of water (surface tension =			
	75 dynes/cm) is:					
	a) 375 dynes b) 375π dynes	c) 750 dynes	d) 750π dynes			
48)	NC ⁻¹ has the same dimension as:					
	a) Volt meter	b) Farad meter				
	c) Farad/meter	d) Volt/meter				
49)	The quality of sound depends upon:					
	a) Frequency	b) Pitch	_			
	c) No. of overtones	d) Square of amplitude				
50)	At a place the vertical and horizontal compo	onent of earth's magne	etic field are equal. The angle of dip			
	at that place is:		1) 0.04			
51	a) 30 [°] b) 45 [°]	c) 60°	d) 90°			
51)	Which of the following is a scalar quantity?					
	a) Electric field	b) Electrostatic poter	itial			
50)	c) Angular momentum	d) Torque				
52)	Concave mirror:	1.) -1 f				
	a) always forms real image	b) always forms virtu	lai image			
52)	C) forms real image if object is virtual If a thin motal fail is introduced between th	a platas of the consist	ii object is real			
55)	a) increases	b) will be zero	n, me capacitance.			
	a) increases	d) remains constant				
54)	If Boron is donned with an intrinsic semico	nductor, then resulting	form is:			
54)	a) P type conductor	b) N type semicondu	ictor			
	c) P-type conductor	d) N-type conductor				
55)	A small black spot is present on the metal r	late and if the metal n	late is heated to red hot and quickly			
55)	a sman black sports present on the metal plate and it the metal plate is neared to red not and quickly placed in a dark room, then the spot					
	a) will appears red while plate appears black b) will appears white while plate appears red					
	c) will appears white while plate appears bl	ack				
	d) will appears invisible while plate appears black					
	a) will appears invisible while place appears black					

- 56) In Young's experiment, one slit is covered with a transparent blue filter and the other is left as it is, then the interference pattern: a) will be blue b) will be yellow
 - c) will be green
- d) will not be formed 57) A compass needle is allowed to move in a horizontal plane is taken to a geomagnetic pole. It will: a) stay in north-south direction only b) stay in east-west direction only c) become rigid showing no movement d) stay in any position Star twinkles due to: 58) a) refraction c) diffraction d) dispersion b) scattering
- A body is falling freely under the action of gravity alone in vacuum. Which of the following quantities 59) remain constant during the fall? b) potential energy
 - a) kinetic energy
 - c) total mechanical energy
- An electron emitted in beta radiation originates from: 60)
 - a) inner orbits of atom

b) free electrons existing in the nuclei d) photon escaping from the nucleus

c) total linear momentum

c) decay of a neutron in a nuclei

Section-B (2 marks)

Read the following passages and answer the questions given below (61-64):

Greyhound racing is the sixth most popular spectator sport in the United States. Over the last decade, a growing number of racers have been adopted to spend their retirement as household pets, once their racing careers are over.

Many people hesitate to adopt a retired racing greyhound because they think only very old dogs are available. Actually, even champion racers only work until they are about three-and-a-half years old. Because greyhounds usually live to be 12 to 15 years old, their retirement is much longer than their racing careers.

People worry that a greyhound will be more nervous and active than other breeds and will need a large space to run. These are false impressions. Greyhounds have naturally sweet, mild dispositions, and while they love to run, they are sprinters rather than distance runners and are sufficiently exercised with a few daily laps around a fenced-in backyard.

Greyhounds do not make good watchdogs, but they are very good with children, get along well with other dogs (and usually cats as well), and are affectionate and loyal. They are intelligent, well-behaved dogs, usually housebroken in only a few days. A retired racing greyhound is a wonderful pet for almost anyone.

- According to the passage, adopting a greyhound is a good idea for people who: 61)
 - a) do not have children. b) live in apartments.
 - c) do not usually like dogs. d) already have another dog or a cat.
- Which of the following is implied by the passage? 62)
 - a) The public is more aware of greyhounds than they used to be.
 - b) Greyhounds are more competitive than other dogs.
 - c) Greyhound racing should not be allowed.
 - d) People who own pet rabbits should not adopt greyhounds.
- 63) One drawback of adopting a greyhound is that:
 - a) greyhounds are not good with children.
 - b) greyhounds are old when they retire from racing.
 - c) the greyhound's sensitivity makes it temperamental.
 - d) greyhounds are not good watch dogs.
- This passage is most like an advertisement because it: 64)
 - a) uses statistics to prove its point.
 - b) does not present information to substantiate its claims.
 - c) says nothing negative about greyhounds.
 - d) encourages people to do something.

An ellipse is described by using an endless string which passes over two pins. If the axes are 6 cm and 65) 4 cm, the distance between the pins in cm is: a) $2\sqrt{5}$ b) √5 c) $4\sqrt{5}$ d) $\sqrt{5}/3$ If the two circles $x^2 + y^2 + 2\lambda x + c = 0$ and $x^2 + y^2 - 2\mu y - c = 0$ have equal radius, then the 66) locus of (λ, μ) is: a) $x^2 + y^2 = 2c$ c) $y^2 - x^2 = 2c$ The equations $a^2x^2 + 2h(a+b)xy + b^2y^2 = 0$ and $ax^2 + 2hxy + by^2 = 0$ represents: 67) a) two pairs of perpendicular straight lines b) two pair of parallel straight lines c) two pair of straight lines which are equally inclined to each other d) two pair of straight lines which are coincident Two points (a, 3) and (5, b) are the opposite vertices of a rectangle. If other two vertices lie on the line 68) y = 2x + c which passes through the point (a, b), then the value of c is: a) -7 c) 0 d) 7 If $\sin\left(\frac{\pi}{4}\cot\theta\right) = \cos\left(\frac{\pi}{4}\tan\theta\right)$, then $\theta =$ 69) a) $n\pi + \frac{\pi}{4}$ c) $n\pi - \frac{\pi}{4}$ If in $\triangle ABC$, $\frac{\sin A}{\sin c} = \frac{\sin(A-B)}{\sin(B-C)}$, then: b) $2n\pi \pm \frac{\pi}{4}$ d) $2n\pi \pm \frac{\pi}{6}$ 70) b) a^2, b^2, c^2 are in A.P. d) a^2, b^2, c^2 are in H.P. a) *a*, *b*, *c* are in A.P. c) a, b, c are in H.P. If \vec{a} and \vec{b} are unit vectors such that $\vec{a} - 4\vec{b}$ is at right angle to $7\vec{a} - 2\vec{b}$, then the angle between \vec{a} and 71) \vec{b} is: a) $\frac{\pi}{2}$ b) $\frac{\pi}{3}$ c) $\frac{\pi}{6}$ d) $\frac{\pi}{4}$ The area between the curve $y = \sin^2 x$, x-axis and the ordinate x = 0 and $x = \frac{\pi}{2}$ is: 72) b) $\frac{\pi}{4}$ a) $\frac{\pi}{2}$ $\int \frac{\cos 2x - \cos 2y}{\cos x - \cos y} dx =$ c) $\frac{\pi}{2}$ d) π 73) a) $2(\sin x + \sin y) + c$ b) $-2(\sin x + \sin y) + c$ c) $2(\sin x + x \cos y) + c$ d) $2(\sin x - x \cos y) + c$ The point on the curve $y = x^2 - 3x + 2$, where tangent is perpendicular to y = x is: 74) a) (0,2) b) (1,0) c) (-1,6) If $x = \frac{2at}{1+t^3}$ and $y = \frac{2at^2}{(1+t^3)^2}$, then $\frac{dy}{dx} =$ a) ax b) $\frac{x}{a}$ c) $\frac{a}{x}$ d) (2, -2)75) d) -ax $\lim_{x \to 0} \frac{2^{x} - 1}{(1 + x)^{1/2} - 1} =$
a) 1 76) c) log 2 b) 0 d) log 4 Let $f: R \to \left[0, \frac{\pi}{2}\right]$ be defined by $f(x) = \tan^{-1}(x^2 + x + a)$. Then the set of values of a for which f is 77) onto is: a) [0,∞) b) [2,1] c) $\left[\frac{1}{4},\infty\right)$ d) $\left(-\infty,\frac{1}{4}\right]$ If in the expansion of $\left(x^2 + \frac{k}{x}\right)^5$, the coefficient of x is 270, then $k = \frac{1}{2}$ 78) b) 4 c) 5 a) 3 d) 7

79)	If $A = \begin{bmatrix} \cos x & \sin x \\ -\sin x & \cos x \end{bmatrix}$ and $A(adj A) = \lambda$	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \text{ then } \lambda =$		
	a) 0 b) 1	c) 2 d) 3		
80)	The hydrocarbon which does not decolour	ise alkaline $KMnO_4$ solution and also does not give any		
	precipitate with ammoniacal silver nitrate is	a) anonyma d) 1 hydriga		
Q 1)	a) benzene b) acetylene The UIPAC name of the following compour	c) propyne d) 1-butyne		
01)	The for AC name of the following compound	lid 15.		
	$CH_3 - CH_2 - CH - C = CH_2$			
	ĊH ₂ ĊH ₃			
	CH ₃			
	a) 2-methyl-3-ethyl-1-pentene	b) 3-ethyl-4-methyl-4-pentene		
	c) 3-ethyl-2-methyl-1-pentene	d) 3-methyl-2-ethyl-1-pentene		
82)	A gaseous hydrocarbon gives upon combu	stion 0.72 g of water and 3.08 g of CO ₂ . The empirical		
	formula of the hydrocarbon is:			
	a) $C_2 H_4$ b) $C_3 H_6$	c) $C_6 H_5$ d) $C_7 H_8$		
83)	The hybridization of atomic orbitals of nitro	bgen in NO_2^+ , NO_3^- and NH_4^+ are respectively:		
	a) sp , sp^3 and sp^2 b) sp , sp^2 and sp^3	c) sp^2 , sp and sp^3 d) sp^2 , sp^3 and sp		
84)	If 20 ml of 0.4 N NaOH solution complete	ly neutralizes 40 ml of a dibasic acid, the molarity of the		
	acta solution is: a > 0.1 M b) $0.2 M$	a > 0.2 M $d > 0.4 M$		
85)	a) 0.1 M b) 0.2 M m^{H} of a saturated solution of $Ra(OH)$ is 12	C) 0.5 M (1) 0.4 M The value of solubility product K of $Pa(OH)$ is:		
63)	p of a saturated solution of $Du(OT)_2$ is 12 a) 2.2 × 10 ⁻⁷ b) 5 × 10 ⁻⁷	2. The value of solubility product, K_{sp} of $\mathcal{D}u(\mathcal{O}H)_2$ is.		
96)	a) 5.5×10 b) 5×10 Sodium motel resets with 41.0 at high to	$(0) 4 \times 10^{-1}$ $(0) 5 \times 10^{-1}$		
80)	with carbon dioxide in water to form Na (The compound (X) is:		
	a) Na_2O_2 b) Na_2O_2	r_{3} . The compound (X) is: $r_{1} N a_{2} C \Omega_{2}$ d) $N a A l \Omega_{2}$		
87)	The frequency of the first line of Balmer se	eries in hydrogen atom is v_0 . The frequency v of the line		
0/)	emitted by doubly ionized lithium atom (Li	⁺⁺) is:		
	a) $2v_0$ b) $4v_0$	c) $9v_0$ d) v_0		
88)	1 mg radium has 2.68×10^{18} atoms. Its	half life is 1620 years. How many radium atoms will		
	disintegrate from 1 mg of pure radium in 32	40 years?		
	a) 2.01×10^9	b) 2.01×10^{18}		
	c) 1.01×10^9	d) 1.01×10^{18}		
89)	A parallel plate capacitor has a uniform elec	tric field E in the space between the plates. If the distance		
	between the plates is d and area of each plat	e is A, the energy stored in the capacitor is:		
	a) $\frac{1}{2}\varepsilon_0 E^2$ b) $\frac{E^2Aa}{\varepsilon_0}$	c) $\frac{1}{2}\varepsilon_0 E^2 A d$ d) $\varepsilon_0 E^2 A d$		
90)	The e.m.f. of a generator is 6 volt and intern	al resistance is $0.5 \text{ k}\Omega$. The reading of a voltmeter having		
	an internal resistance of 2.5 k Ω is:			
	a) 10 ⁻³ V b) 10 V	c) 5 V d) 1 V		
91)	A permanent magnet in the shape of a thin	cylinder of length 50 cm has intensity of magnetization		
	$10^{\circ} A/m$. The magnetization current is:			
\mathbf{O}	a) 5×10^{3} A b) 6×10^{3} A	c) 5×10^{4} A d) 6×10^{4} A		
92)	A Carnot engine absorbs /50 J of heat energy	y from a reservoir at 137 C and rejects 500 J of heat during		
	each cycle, then the temperature of sink is: a) 0.25° C b) 0.22° C	a) $0.44^{\circ}C$ d) $0.54^{\circ}C$		
93)	0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0	am and the other is in contact with ice. If 12 g of ice melts		
,,,	one choose a 0.25 m long metal bar is in steam and the other is in contact with ice. If 12 g of ice metals ner minute, then the thermal conductivity of the metal is (cross-section of the bar $-5 \times 10^{-4} m^2$ and			
	latent heat of ice = 80 cal a^{-1}).			
	a) $20 \ cals^{-1}m^{-1}$ ° C^{-1}	b) 10 $cals^{-1}m^{-1}C^{-1}$		
	c) 40 cals ⁻¹ m^{-1} °C ⁻¹	d) 80 $cals^{-1}m^{-1}C^{-1}$		

d) $2T\sqrt{5}$

d) 2 cm

- The Young's modulus of the material of rod is $2 \times 10^{11} N/m^2$ and its density is $8000 kg/m^3$. The 94) time taken by sound wave to transverse 1 m of the rod is: a) 1×10^{-4} s b) 2×10^{-4} s c) 4×10^{-4} s d) 16×10^{-4} s
- Fringe width between two consecutive fringes is 11780 Å and the slit separation is 0.1 mm. If the 95) distance between screen and slit is 0.2 mm then wavelength of light used is: a) 5890 Å b) 58900 Å c) 589 Å d) 8950 Å
- Real image of an object is formed at a distance of 20 cm from a lens. On putting another lens in contact 96) with it, the image is shifted 10 cm towards the combination. The power of the lens is: b) 3 D a) 2 D c) 6 D d) 10 D
- A man measures the period of a simple pendulum inside a stationary lift and finds it to be T sec. If the 97) lift accelerates upwards with an acceleration g/4, then the period of the pendulum will be:

c) $\frac{2T}{\sqrt{5}}$ A body is sliding down an inclined plane having coefficient of friction 0.5. If the normal reaction is 98) twice that of the resultant downward force along the incline, the angle between the inclined plane and the horizontal is: b) 60° d) 90°

a) 9 cm

99)

c) 45°

- A capillary tube when immersed vertically in liquid records a rise of 3 cm. If the tube is immersed in
- the liquid at an angle of 60° with the vertical. The length of the liquid column along the tube is:
 - c) 3 cm
- Two parallel rail tracks run north-south. On one track, train A moves north with a speed of 54 km/hr 100) and on the other track, train B moves south with a speed of 90 km/hr. The velocity (in m/s) of train A with respect to train B is:

a) 10 b) 15 c) 25 d) 40

b) 6 cm

Thank You!!!!!!