

INSTITUTE OF ENGINEERING

Model Entrance Exam

(Set-10 Solutions)

Instructions:

There are 100 multiple-choice questions, each having four choices of which only one choice is correct.

Section-A (1 marks)

1) c
2) a If the expression 'must' is used in the statement, we use 'need' forms in the tag.
3) b If the verb is in gerund form, we use a possessive adjective and not a possessive pronoun.
4) a
5) a
6) a
7) d
8) a
9) d
10) a
11) c
12) b
13) c $\lim _{x \rightarrow 0} \frac{\sin p x}{\tan 3 x}=4$
$\lim _{x \rightarrow 0} \frac{\frac{\sin p x}{p x} \cdot p x}{\frac{\tan 3 x}{3 x} \cdot 3 x}=4$
$\frac{p}{3}=4$
$p=12$
14) a $\quad y=\log \sqrt{\tan x}$
$y=\log (\tan x)^{1 / 2}$
$y=\frac{1}{2} \log (\tan x)$
$\frac{d y}{d x}=\frac{1}{2} \cdot \frac{1}{\tan x} \cdot \sec ^{2} x$
At $x=\frac{\pi}{4}$,
$\frac{d y}{d x}=\frac{1}{2} \cdot \frac{1}{1} \cdot(\sqrt{2})^{2}=1$
15) a If the expression $z=a x+b y$ be such that the product of x and y is 1 , then the minimum value of $z=2 \sqrt{a b}$.

Here, $\tan ^{2} \theta \cdot \cot ^{2} \theta=1$
\therefore Minimum value $=2 \sqrt{9 \times 4}=12$
16) b $\quad \int e^{x}(\cos x-\sin x) d x=\int e^{x}[\cos x+(-\sin x)] d x=e^{x} \cos x+c$
$\because \int e^{x}\left[f(x)+f^{\prime}(x)\right] d x=e^{x} f(x)+c$
17) $\mathrm{b} \quad \int_{\pi / 6}^{\pi / 2} \frac{\cos x}{\sin ^{2} x} d x=\int_{\pi / 6}^{\pi / 2} \operatorname{cosec} x \cdot \cot x d x=|-\operatorname{cosec} x|_{\pi / 6}^{\pi / 2}=-\operatorname{cosec} \frac{\pi}{2}+\operatorname{cosec} \frac{\pi}{6}=-1+2=1$
18) d $\quad x^{2}-p(x+1)-q=0$
$x^{2}-p x-p-q=0$
$\alpha+\beta=p$ and $\alpha \beta=-p-q$
$(\alpha+1)(\beta+1)=\alpha \beta+\alpha+\beta+1=-p-q+p+1=1-q$
19) $\mathrm{b} \quad x=1+\frac{2}{1!}+\frac{4}{2!}+\frac{8}{3!}+\cdots=e^{2}$
$\sqrt{x}=\sqrt{e^{2}}=e$
20) b From end, $a=86, d=-4$
$T_{19}=a+18 d=86+18(-4)=86-72=14$
21) $\mathrm{b} \quad\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)^{-3}=\cos (-\pi)+i \sin (-\pi)$
$\because(\cos \theta+\mathrm{i} \sin \theta)^{\mathrm{n}}=\cos \mathrm{n} \theta+\mathrm{i} \sin \mathrm{n} \theta$ [De Moivre's Theroem]
$=-1+0=-1$
22) $\mathrm{b} \quad A^{2}=A \cdot A=(A B) \cdot A=A \cdot(B A)=A \cdot B=A$
23) a There are 6 letters in the word 'GARDEN' which can be arranged in $6!=720$ ways.

There are two vowels ' A ' and ' E '. In half of these arrangements A is always before E.
Hence, total number of required arrangements is $\frac{1}{2}(720)=360$.
24) d Since, maximum and minimum values of $\cos x-\sin x$ are $\sqrt{2}$ and $-\sqrt{2}$ respectively.

So, the range of $f(x)$ is $[\sqrt{2},-\sqrt{2}]$.
25) b Coeff. of $x, y, z=$ dr's of normal to the plane $=(4-1,13-2,5-0)=(3,11,5)$
26) b $\quad \theta=\tan ^{-1} 3$
$\tan \theta=3$
$\frac{y}{x}=3$
$y=3 x$
27) $\mathrm{d} \quad$ In x -axis, $y=0$
$x^{2}=4(0+9)$
$x=6$
When, $x=6,6+k y=6$
$k y=0$, which is true $\forall k \in R$ as $y=0$.
28) c $\quad x y=0 \Rightarrow x=0$ or $y=0$

It represents $y z$ and $z x$ plane i.e., the two planes are at right angles.
29) d $x^{2}-y^{2}=0$ does not represent a hyperbola.

It represents a pair of straight lines.
i.e., $(x+y)(x-y)=0$
30) d Given vectors are parallel if:
$\frac{2}{4}=\frac{1}{-\lambda}=\frac{3}{6}$
$\lambda=-2$
31) b $\quad 4 \sin ^{-1} x+\cos ^{-1} x=\pi$
$3 \sin ^{-1} x+\left(\sin ^{-1} x+\cos ^{-1} x\right)=\pi$
$3 \sin ^{-1} x+\frac{\pi}{2}=\pi$
$\sin ^{-1} x=\frac{\pi}{6}$
$x=\sin \frac{\pi}{6}=\frac{1}{2}$
32) d $\cos \theta=x+\frac{1}{x}=\frac{x^{2}+1}{x}$
$x^{2}-\cos \theta \cdot x+1=0$
Since, x is real;
$B^{2}-4 A C \geq 0$
$\cos ^{2} \theta-4 \geq 0$
$\cos ^{2} \theta \geq 4$, which is not possible for any value of θ.
33) d $x+4+x-6=0$
$2 x=2$
$x=+1$
34) b Electronic configuration of Cl :
$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{5}$
$l=0$ for s-subshell.
No. of electrons $=2+2+2=6$
35) a As s-character in hybrid orbital increases, the bond angle increases. Since, the s-orbitals overlap from end to end in most situations, it leads to an increase in bond angle.
36) c The presence of calcium and magnesium bicarbonates $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}$ and $\mathrm{Mg}\left(\mathrm{HCO}_{3}\right)_{2}$ causes temporary hardness in water. The presence of soluble salts of calcium and magnesium, i.e., sulphates and chlorides of calcium and magnesium cause permanent hardness in water.
37) c When nitrate salts are treated with conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$, it gives brown fumes of NO_{2}.
$2 \mathrm{KNO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{KHSO}_{4}+\mathrm{HNO}_{3}$
$4 \mathrm{HNO}_{3} \rightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
Brown fumes
38) a $\mathrm{CaCN}_{2}+C$: Nitrolime
$\mathrm{CuFeS}_{2}+\mathrm{FeS}_{2}$: Fool's gold
39) d As we go down the group, the solubility of group IIA hydroxides increases.
40) b In a carbanion, carbon is bonded with three atoms or groups (trivalent) and has eight electrons (octet). It is an electron rich species. It is sp^{3} hybridized and has pyramidal geometry.
41) a Alcohol and Ether are functional isomers.
42) c $\mathrm{CuSO}_{4} \rightarrow \mathrm{Cu}^{2+}+\mathrm{SO}_{4}^{2-}$

Valency $=2$ (bivalent)
43) c Electronegativity increases from left to right along a period and decreases on descending a group.
44) c Frame-I

- Observer on the train
- Observer and object have same horizontal velocity (velocity of train). So, the object seems to be horizontally no moving. But the object gains vertical velocity.
- So, the observer sees the object falling vertically in a straight line.

Frame-II

- Observer on platform
- Observer is at rest but object has both horizontal velocity (velocity of train) and vertical velocity.
- So, the observer sees the object moving in a parabolic path.

45) a K.E. $=\frac{1}{2} \frac{P^{2}}{m}=\frac{1}{2} \times \frac{500^{2}}{10}=1.25 \times 10^{3} \mathrm{ergs}$
46) c $\quad g_{\text {poles }}>g_{\text {equator }}$

- due to smaller polar radius
- due to no effect of earth's rotation on poles.
$g_{\text {poles }}-g_{\text {equator }}=0.52 \mathrm{~m} / \mathrm{s}^{2}$

47) d Surface tension $=\frac{\text { Force }}{\text { Length in contact }}$

Force $=$ Surface tension \times Length in contact
$=$ Surface tension \times Circumference of plate
$=75 \times 2 \pi \times 5=750 \pi$ dynes
48) d $\mathrm{E}=\mathrm{F} / \mathrm{q}=\mathrm{N} / \mathrm{C}, \mathrm{E}=\mathrm{V} / \mathrm{d}=$ Volt $/$ meter
49) c
50) b Angle of dip is the angle made by resultant magnetic field with horizontal.
$\tan \theta=\frac{V}{H}=1$
$\therefore \theta=45^{\circ}$
At poles, $\theta=90^{\circ}$ and at equator $\theta=0^{\circ}$
51) b All potentials (electric, electrostatic) are scalar and all gradients (temperature, velocity) are vector.
52) a

Mirror	Nature of image of real object
Convex	Virtual, erect, diminished
Concave	a. Real, inverted, magnified b. Virtual, erect and diminished

53) d If thin metal foil is inserted in the middle, then capacitance remains constant.
$C=\frac{\varepsilon_{0} A}{d}$
After insertion,
$C_{1}=\frac{\varepsilon_{0} A}{d / 2}=2 C$
$C_{2}=\frac{\varepsilon_{0} A}{d / 2}=2 C$
Since, the two capacitors will be in series, equivalent capacitance. C_{s} is given by
$C_{S}=\frac{C_{1} C_{2}}{C_{1}+C_{2}}=C$
54) c An intrinsic semiconductor having trivalent impurity is called P-type semiconductor.
55) c -A perfectly black body emits radiations of all possible wavelengths when it is hot so it appears white.
-A perfectly black body absorbs all incident radiations without any reflection and transmission so it appears black when cools.
-The radiations emitted by perfectly black body depends on its surface temperature and not on nature of material.
56) d -If one slit is illuminated by red colour and another by violet colour, then no interference is observed as the sources are incoherent.
-In interference, energy is redistributed.
-Interference is based on conservation of energy.
57) d -It shows no particular direction at earth magnetic pole as $\mathrm{H}=0$ at magnetic poles. So, it may stay in any direction.
-At equator, $\mathrm{V}=0$
58) a -Twinkling of stars is due to refraction. It is due to refractive index fluctuation of atmosphere.
-A stick partially dipped in water seems bent due to refraction.
-Appearance of sun. just before actual sunrise and just after sunset is due to refraction
-A tank of liquid or a pond appears shallow than its actual depth due to refraction.
-Sun appears to be elliptical when its at the horizon due to refraction.
59) c
60) c In β-emission, a neutron of nucleus decays into a proton, a β-particle and an anti-neutrino. $n \rightarrow p+e^{-}+\bar{v}$

Section-B (2 marks)

61) d
62) a
63) d
64) d The enthusiastic tone of the passage seems meant to encourage people to adopt retired greyhounds. Choice a is wrong because there is only one statistic in the passage (in the first sentence), and it is not used to prove the point that greyhounds make good pets. Choice b is wrong because the author substantiates every point with information. Choice c is wrong because the passage does make the negative point that greyhounds do not make good watchdogs.
65) d Given, $2 a=6,2 b=4$ i.e., $a=3, b=2$
$e^{2}=1-\frac{b^{2}}{a^{2}}=1-\frac{4}{9}=\frac{5}{9}$
$e=\frac{\sqrt{5}}{3}$
Distance between the pins $=2 a e=2 \times 3 \times \frac{\sqrt{5}}{3}=2 \sqrt{5}$
66) b As given.
$\sqrt{\lambda^{2}-c}=\sqrt{(-\mu)^{2}+c}$
$\lambda^{2}-c=\mu^{2}+c$
$\lambda^{2}-\mu^{2}=2 c$
\therefore Locus of (λ, μ) is: $x^{2}-y^{2}=2 c$
67) c $\quad a^{2} x^{2}+2 h(a+b) x y+b^{2} y^{2}=0 \quad--$ (i)
$a x^{2}+2 h x y+b y^{2}=0$
Equation of bisectors of angle between the line pair (i) is:
$h(a+b)\left(x^{2}-y^{2}\right)=\left(a^{2}-b^{2}\right) x y$
$h\left(x^{2}-y^{2}\right)=(a-b) x y$
which is same as the equation of bisectors between the line pair (ii).
68) a Midpoint of the line joining the given points lie on the line $y=2 x+c$
$\therefore \frac{3+b}{2}=2\left(\frac{a+5}{2}\right)+c$
$2 a+2 c-b+7=0$
Also, given line passes through (a, b)
$\therefore b=2 a+c$
Solving (i) and (ii),
$c=-7$
69) a $\quad \sin \left(\frac{\pi}{4} \cot \theta\right)=\cos \left(\frac{\pi}{4} \tan \theta\right)$
$\sin \left(\frac{\pi}{4} \cot \theta\right)=\sin \left(\frac{\pi}{2}-\frac{\pi}{4} \tan \theta\right)$
$\frac{\pi}{4} \cot \theta=\frac{\pi}{2}-\frac{\pi}{4} \tan \theta$
$\cot \theta+\tan \theta=2$
$\frac{1}{\tan \theta}+\tan \theta=2$
$\tan ^{2} \theta-2 \tan \theta+1=0$
$\tan ^{2} \theta-\tan \theta-\tan \theta+1=0$
$\tan \theta(\tan \theta-1)-1(\tan \theta-1)=0$
$(\tan \theta-1)(\tan \theta-1)=0$
$\tan \theta=1$
$\tan \theta=\tan \frac{\pi}{4}$
$\theta=n \pi+\frac{\pi}{4}$
70) b
$\frac{\sin A}{\sin C}=\frac{\sin (A-B)}{\sin (B-C)}$
$\frac{\sin (B+C)}{\sin (A+B)}=\frac{\sin (A-B)}{\sin (B-c)} \quad \because A+B+C=\pi$
$\sin (B+C) \cdot \sin (B-C)=\sin (A+B) \cdot \sin (A-B)$
$\sin ^{2} B-\sin ^{2} C=\sin ^{2} A-\sin ^{2} B$
$b^{2}-c^{2}=a^{2}-b^{2}$
$a^{2}+c^{2}=2 b^{2}$
i.e., a^{2}, b^{2}, c^{2} are in A.P.
71) b As given,
$(\vec{a}-4 \vec{b}) \cdot(7 \vec{a}-2 \vec{b})=0$
$7 a^{2}-2 \vec{a} \cdot \vec{b}-28 \vec{a} \cdot \vec{b}+8 b^{2}=0$
$7 a^{2}+8 b^{2}=30 \vec{a} . \vec{b}$
$7.1+8.1=30(1.1 \cdot \cos \theta)$
$\cos \theta=\frac{1}{2}$
$\theta=\frac{\pi}{3}$
72) b Area $=\int_{0}^{\pi / 2} \sin ^{2} x d x=\frac{1}{2} \int_{0}^{\pi / 2}(1-\cos 2 x) d x=\frac{1}{2}\left[x-\frac{1}{2} \sin 2 x\right]_{0}^{\pi / 2}=\frac{1}{2}\left[\left(\frac{\pi}{2}-0\right)-\frac{1}{2}(0-0)\right]=\frac{\pi}{4}$
73) c $\quad \int \frac{\cos 2 x-\cos 2 y}{\cos x-\cos y} d x==\int \frac{\left(2 \cos ^{2} x-1\right)-\left(2 \cos ^{2} y-1\right)}{\cos x-\cos y} d x=\int \frac{2 \cos ^{2} x-2 \cos ^{2} y}{\cos x-\cos y} d x=2 \int(\cos x+\cos y) d x=2(\sin x+x \cos y)+c$
74) $\mathrm{b} \quad$ Slope of the line $y=x$ is 1 .

As given, slope of tangent is perpendicular to this line i.e.,
$\frac{d y}{d x}=-1$
Diff. given curve, we get,
$\frac{d y}{d x}=2 x-3$
$-1=2 x-3$
$x=1$
Putting $x=1$ in the equation of curve, $y=0$
Hence, required point is $(1,0)$.
75) $\mathrm{b} \quad$ Here, $\frac{x^{2}}{y}=\frac{4 a^{2} t^{2}}{2 a t^{2}}$
$\frac{x^{2}}{y}=2 a$
$y=\frac{x^{2}}{2 a}$
$\frac{d y}{d x}=\frac{2 x}{2 a}=\frac{x}{a}$
76) d $\lim _{x \rightarrow 0} \frac{2^{x}-1}{(1+x)^{1 / 2}-1} \quad$ (0/0 form)
$=\lim _{x \rightarrow 0} \frac{2^{x} \log 2}{\frac{1}{2}(1+x)^{-1 / 2}} \quad$ (Applying L'Hospital rule)
$=\frac{2^{0} \log 2}{\frac{1}{2}(1+0)^{-1 / 2}}=\frac{\log 2}{\frac{1}{2}}=2 \log 2=\log 2^{2}=\log 4$
77) c Since, co-domain $=\left[0, \frac{\pi}{2}\right)$, for f be onto,

Range $=\left[0, \frac{\pi}{2}\right)$
This is possible only when $x^{2}+x+a \geq 0 \forall x \in R$
Thus, $1^{2}-4 a \leq 0 \quad($ discriminant $\leq 0)$
$a \geq \frac{1}{4}$
78) a If x occurs in $T_{r+1}, r=\frac{5(2)-1}{2+1}=3$
\therefore Coefficient of $\mathrm{x}={ }^{5} \mathrm{C}_{3}(k)^{3}=270$
$k^{3}=27$
$k=3$
79) b We know that,
$A(\operatorname{adj} A)=|A| I$

Thus, $\lambda=|A|=\left|\begin{array}{cc}\cos x & \sin x \\ -\sin x & \cos x\end{array}\right|=\cos ^{2} x+\sin ^{2} x=1$
80) a
81) c
82) d $18 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ contains 2 g H
$0.72 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ contain $\frac{2}{18} \times 0.72=0.08 \mathrm{~g} \mathrm{H}$
$44 \mathrm{~g} \mathrm{CO}_{2}$ contains 12 g C
$3.08 \mathrm{~g} \mathrm{CO}_{2}$ contains $\frac{12}{44} \times 3.08=0.84 \mathrm{~g} \mathrm{C}$
$C: H=\frac{0.84}{12}: \frac{0.08}{1}=0.07: 0.08=7: 8$
\therefore Empirical formula $=\mathrm{C}_{7} \mathrm{H}_{8}$
83) b Key concept:

Hybridization $=$ no. of σ-bond + lone pair
Hybridization $=2(\mathrm{sp})$
Hybridization $=3\left(\mathrm{sp}^{2}\right)$
Hybridization $=4\left(\mathrm{sp}^{3}\right)$
In $\mathrm{NO}_{3}{ }^{-}$, there are 3 bonding domains in the central N atom (one single bond and two double bonds) and zero lone electron pairs. (sp)
In $\mathrm{NO}_{2}{ }^{-}$, there are 2 bonding domains in the central N atom (one single bond and one double bond) and zero lone electron pairs. (sp^{2})
In $\mathrm{NH}_{4}{ }^{-}$, there are 4 bonding domains in the central N atom (four single bonds) and zero lone electron pairs. (sp^{3})
84) a $\quad N_{1} V_{1}=N_{2} V_{2}$
$N_{1}=\frac{N_{2} V_{2}}{V_{1}}=\frac{0.4 \times 20}{40}=0.2$
Hence, $M=\frac{0.2}{2}=0.1$
85) $\mathrm{b} \quad p^{H}=12$
$\left[H^{+}\right]=10^{-12} M$
$\left[\mathrm{OH}^{-}\right]=10^{-2} \mathrm{M}$
$\mathrm{Ba}(\mathrm{OH})_{2} \rightleftharpoons \mathrm{Ba}^{2+}+2 \mathrm{OH}^{-}$
$\left[\mathrm{Ba}^{2+}\right]=\frac{10^{-2}}{2}=5 \times 10^{-3} \mathrm{M}$
$K_{s p}=\left(5 \times 10^{-3}\right)\left(10^{-2}\right)^{2}=5 \times 10^{-7}$
86) b
87) c $\quad v_{0}=R\left(\frac{1}{2^{2}}-\frac{1}{3^{2}}\right)$ for first line of Balmer series.

For doubly ionized Li^{++},
$v=Z^{2} R\left(\frac{1}{2^{2}}-\frac{1}{3^{2}}\right)=(3)^{2} R\left(\frac{1}{2^{2}}-\frac{1}{3^{2}}\right)$
Now, $\frac{v}{v_{0}}=9 \Rightarrow v=9 v_{0}$
88) b $\quad n=\frac{t}{t_{1 / 2}}=\frac{3240}{1620}=2$

As, $\frac{N}{N_{0}}=\frac{m}{m_{0}}=\left(\frac{1}{2}\right)^{n}$
Mass of radium left after 2 half-lives is:
a) $m=m_{0}\left(\frac{1}{2}\right)^{n}=1 \times\left(\frac{1}{2}\right)^{2}=\frac{1}{4}=0.25 \mathrm{mg}$
89) c Capacitance of a parallel plate capacitor is:
$C=\frac{\varepsilon_{0} A}{d}$
Potential difference between the plates is:
$V=E d$
Energy stored in the capacitor is:
$U=\frac{1}{2} C V^{2}=\frac{1}{2}\left(\frac{\varepsilon_{0} A}{d}\right)(E d)^{2}=\frac{1}{2} \varepsilon_{0} E^{2} A d$
90) c Total resistance $=2.5+0.5=3 \mathrm{k} \Omega=3000 \Omega$

Current (I) $=6 / 3000 \mathrm{~A}$
Reading of voltmeter $=I \times(2.5 \times 1000)=\frac{6}{3000} \times 2500=5 \mathrm{~V}$
91) a Here, $l=50 \mathrm{~cm}=0.5 \mathrm{~m}, M=10^{6} \mathrm{Am}^{-1}$

As, $M=\frac{\text { Magnetization current }\left(\mathrm{I}_{\mathrm{m}}\right)}{\text { length }(\mathrm{l})}$
$I_{M}=M \times l=10^{6} \times 0.5=5 \times 10^{5} \mathrm{~A}$
92) $\mathrm{b} \quad \frac{Q_{2}}{Q_{1}}=\frac{T_{2}}{T_{1}}$
$T_{2}=\frac{Q_{2}}{Q_{1}} \times T_{1}=\frac{500}{750} \times 410=273.33 \mathrm{~K}=273.33-273=0.33{ }^{\circ} \mathrm{C}$
93) d $\quad Q=m L=12 \times 80=960 \mathrm{cal}$

Also, $Q=\frac{K A\left(T_{1}-T_{2}\right) t}{x}$
$960=\frac{K \times 5 \times 10^{-4} \times 100 \times 60}{0.25}$
$K=\frac{960 \times 0.25}{5 \times 10^{-2} \times 60}=80 \mathrm{cals}^{-1} \mathrm{~m}^{-1{ }^{\circ} \mathrm{C}^{-1}}$
94) $\mathrm{b} \quad v=\sqrt{\frac{Y}{\rho}}=\sqrt{\frac{2 \times 10^{11}}{8000}}=\frac{1}{2} \times 10^{4} \mathrm{~m} / \mathrm{s}$
$\therefore t=\frac{x}{v}=\frac{1}{\frac{1}{2} \times 10^{4}}=2 \times 10^{-4} \mathrm{~s}$
95) a Fringe width $(\beta)=\frac{\lambda D}{d}$
or, $\lambda=\frac{\beta d}{D}=\frac{11780 \times 10^{-10} \times 10^{-4}}{2 \times 10^{-4}}=5890 \times 10^{-10}=5890 \AA$
96) b As the image formed is real, therefore lens must be convex, $v=20 \mathrm{~cm}$. Let f_{1} be the focal length for this lens.
$\frac{1}{f_{1}}=\frac{1}{v}-\frac{1}{u}=\frac{1}{20}-\frac{1}{u}$
After placing it in contact with another lens, the image shifted to 10 cm towards the combination.
i.e., $v=(20-10)=10 \mathrm{~cm}$

So, $\frac{1}{10}-\frac{1}{u}=\frac{1}{f_{1}}+\frac{1}{f_{2}}$
$\frac{1}{10}-\frac{1}{u}=\left(\frac{1}{20}-\frac{1}{u}\right)+\frac{1}{f_{2}}$
$f_{2}=20 \mathrm{~cm}=\frac{20}{100} \mathrm{~m}$
$\therefore P=\frac{1}{f_{2}}=\frac{100}{20}=5 D$
97) c In a stationary lift, $T=2 \pi \sqrt{\frac{l}{g}}$

In upward moving lift, $T^{\prime}=2 \pi \sqrt{\frac{l}{g+a}}$
$\frac{T^{\prime}}{T}=\sqrt{\frac{g}{g+a}}=\sqrt{\frac{g}{g+\frac{g}{4}}}=\sqrt{\frac{4}{5}}=\frac{2}{\sqrt{5}}$
$\therefore T^{\prime}=\frac{2 T}{\sqrt{5}}$
98) c Resultant downward force along the incline $=m g(\sin \theta-\mu \cos \theta)$

Normal reaction $=m g \cos \theta$
Given, $m g \cos \theta=2 m g(\sin \theta-\mu \cos \theta)$
or, $m g \cos \theta+2 \mu m g \cos \theta=2 m g \sin \theta$
or, $m g \cos \theta+2 \times \frac{1}{2} \times m g \cos \theta=2 m g \sin \theta$
or, $m g \cos \theta+m g \cos \theta=2 m g \sin \theta$
or, $2 m g \cos \theta=2 m g \sin \theta$
or, $\frac{\sin \theta}{\cos \theta}=\frac{2 m g}{2 m g}$
or, $\tan \theta=1$
$\therefore \theta=45^{\circ}$
99) b

Vertical height of the water in the tube remains constant.
So, $l=\frac{h}{\cos \theta}=\frac{3}{\cos 60^{\circ}}=\frac{3}{\frac{1}{2}}=3 \times 2=6 \mathrm{~cm}$
100) d Let the positive direction of motion be from south to north.

Velocity of train A w.r.t. ground $\left(v_{A G}\right)=+54 \mathrm{~km} / \mathrm{hr}=+54 \times \frac{5}{18} \mathrm{~m} / \mathrm{s}=+15 \mathrm{~m} / \mathrm{s}$
Velocity of train B w.r.t. ground $\left(v_{B G}\right)=-90 \frac{\mathrm{~km}}{\mathrm{hr}}=-90 \times \frac{5}{18} \mathrm{~m} / \mathrm{s}=-25 \mathrm{~m} / \mathrm{s}$
Relative velocity of train A with respect to train B is:
$v_{A B}=v_{A G}+v_{G B}=v_{A G}-v_{B G}=15-(-25)=40 \mathrm{~m} / \mathrm{s}$

