IOE MODEL ENTRANCE EXAM 2023 SET 11

BEATS ENGINEERING

INSTITUTE OF ENGINEERING

Model Entrance Exam

<u>(Set-11)</u>

Instructions:

There are 100 multiple-choice questions, each having four choices of which only one choice is correct.

Date: 2080/04/27 (August-12)

Duration: 2 hours Time: 8 AM – 10 AM

BEATS

Section-A (1 marks)

1)	A substance has boiling point 563 K, but is starts decomposing near this temperature. Which type		
	distillation process is suitable for this purific	cation?	
	a) simple distillation	b) fractional distillation	on
\mathbf{a}	c) steam distillation	d) distillation under r	educed pressure
2)	The IUPAC name of $CH_3 - U - C_2H_5$ is:	1 \ (1 \ (1	
	a) ethoxy methane	b) methoxy ethane	
2	c) ethyl methyl ether	d) methyl ethyl ether	
3)	Reaction of HBr with propene in absence of	peroxide is a/an:	
	a) electrophilic addition	b) free radical additio	n
	c) electrophilic substitution	d) nucleophilic substi	tution
4)	If an electron has spin quantum number of	+1/2 and a magnetic q	uantum number of -1, it cannot be
	presented in:	× • • •	N 1. 1
_`	a) d-orbital b) f-orbital	c) p-orbital	d) s-orbital
5)	The first step in the extraction of Cu from co	opper pyrites is:	
	a) reduction by carbon	b) electrolysis of ore	
-	c) roasting of ore in O_2	d) magnetic separatio	n
6)	Which of the following is strongest oxidizin	ig agent?	
	a) F_2 b) Cl_2	c) <i>Br</i> ₂	d) I_2
7)	Copper turnings when heated with concentration	ated sulphuric acid wil	l give:
	a) SO_2 b) SO_3	c) H_2S	d) <i>O</i> ₂
8)	Which of the following alkali metal ions has	s lowest ionic mobility	in aqueous solution?
	a) Rb^+ b) Cs^+	c) <i>Li</i> +	d) <i>Na</i> ⁺
9)	Which of the following does not reflect the	periodicity of elements	?
	a) Bonding behaviour	b) Electronegativity	
	c) Ionization Potential	d) Neutron/proton rat	io
10)	The mass of 112 cm^3 of NH_3 gas at STP is:		
	a) 0.085 g b) 0.85 g	c) 8.5 g	d) 80.5 g
11)	Normality of sulphuric acid containing 50 g	of the acid in 500 mL	of solution is:
	a) 2.04 N b) 0.49 N	c) 0.98 N	d) 0.35 N
12)	The organizations gathered for the s	seminar on managerial	skill improvement.
	a) have b) has	c) was	d) is
13)	She the novel by tomorrow.		
	a) will be completing	b) has completed	
	c) had completed	d) will have complete	ed .
14)	I urged him the application form.		
	a) sign b) to sign	c) signing	d) signed
15)	He would rather home tonight than	go to the movies.	
	a) stayed b) have stayed	c) stay	d) had stayed
16)	We must dispense our duties now. I	t is getting late.	
	a) with b) in	c) on	d) at
17)	I was taken by storm when I came to know I	he passed the exam.	
	a) felt gloomy b) felt depressed	c) felt surprised	d) felt foolish
18)	Sanchita said to Swastik, "I am planning to	leave tomorrow."	
	a) Sanchita told Swastik that she had planned to leave the next day.		
	b) Sanchita told Swastik that she is planning	g to leave the next day.	
	c) Sanchita told Swastik that she will plan to	b leave the next day.	
	d) Sanchita told Swastik that she was planni	ing to leave the next da	y.
19)	Accentuate (Synonym):		
	a) confuse b) baffle	c) bewildered	d) emphasize

20)	Exquisite (Antonym)	:		
	a) hideous	b) elegant	c) dainty	d) delicate
21)	The grammatical patt	ern of the sentence, "I	Every year, we visit the	e orphanage." is:
	a) $S + V + O + A$		b) $S + V + IO + DO$	
	c) $A + S + V + IO + I$	DO	d) $A + S + V + O$	
22)	The word 'politician'	has a stress primarily	on its syllable.	
	a) first	b) second	c) third	d) fourth
23)	The correct phonetic	symbol for the underline	ned word 'Ei <u>th</u> er' is:	
	a) θ	b) / J /	c) $\delta/$	d) / <i>d</i> /
24)	A matrix $\begin{pmatrix} 0 & k+2 \\ 5 & 0 \end{pmatrix}$	is a skew symmetric 1	matrix if $k =$	
	a) 3	b) -5	c) -7	d) -2
25)	A and B are any two	non-empty sets, then (.	$A \cap \overline{B}) =$	
	a) $A \cup B$	b) <i>A</i>	c) <i>B</i> − <i>A</i>	d) <i>A</i> – <i>B</i>
26)	If f(2x+1) = x+1	I, then $f(x^2) =$		
	a) $\frac{x^2+1}{2}$	b) $\frac{x^2+2}{2}$	c) $\frac{x^2-1}{x^2-1}$	d) $\frac{x^2-2}{2}$
27)	$\frac{2}{2}$	$^{\circ}$ 2 and the 28 and the	$\frac{2}{1728}$	$\frac{2}{2}$ n the middle term is:
27)	1100 sum of 5 minutes	b) 8	a) 18	d) 6
•	$\frac{a}{12}$			u) o . 1
28)	If α and β are the roo	ts of the equation $4x^2$	$+3x + 7 = 0$, then $\frac{1}{\alpha}$	$+\frac{1}{\beta} =$
	a) $\frac{4}{-}$	b) $\frac{-3}{-3}$	c) $\frac{7}{-}$	d) $\frac{-7}{-7}$
20)	$\frac{7}{16} r = a + b + y = a c$	$\frac{7}{7}$	$\frac{3}{3}$	4
29)	$\prod x - u + b, y - uu$	$b + b\omega$, $z - u\omega + bc$	x^{-1}	r y + z =
20)	\vec{a}) \vec{b}		$\vec{U} = \vec{U}$	\mathbf{u} $\boldsymbol{\omega}$
30)	If <i>a</i> and <i>b</i> are two not	n-zero vectors satisfyir	a + b = a - b , t	hen a and b are:
	a) parallel to each oth	er	b) perpendicular to ea	ach other
21)	c) inclined at an angle	e of 60°	d) inclined at an angle	e of 45
31)	The direction cosines	of a line normal to the	plane $2x - y + 2z =$	U 1S:
	a) 2, -1, 2	b) $\frac{2}{9}$, $\frac{1}{9}$, $\frac{2}{9}$	c) $\frac{2}{3}, \frac{1}{3}, \frac{2}{3}$	d) $1, \frac{1}{2}, 1$
32)	$ax^2 + 2hxy + by^2 =$	= 0 represent a pair of	perpendicular lines if:	-
	a) a and b are equal in	n magnitude but opposi	ite in sign	
	b) a and b are equal			
	c) a and b are opposit	e in sign		
	d) a and b are recipro	cal to each other		
33)	If latus rectum of an e	ellipse is half of its mir	nor axis, then its eccent	tricity is:
	a) $\frac{3}{-}$	h) $\frac{2}{-}$	c) $\frac{\sqrt{3}}{\sqrt{3}}$	d) $\frac{\sqrt{2}}{\sqrt{2}}$
	$\frac{2}{2}$	3	, ²	
34)	If <i>a</i> , <i>b</i> and <i>c</i> are unit	vectors such that $\dot{a} + b$	$v + \dot{c} = 0$, then the value	ue of \dot{a} . $b + b$. $\dot{c} + \dot{c}$. $\dot{a} =$
25	a) I	b) 3/2	c) -3/2	d) -3
35)	The equation of tange	ent to the parabola $4y^2$	+ 6x = 8y + 7 at its	vertex 1s:
	a) $6x = 11$	b) $6x + 11 = 0$	c) $y = 1$	d) $y + 1 = 0$
36)	If $2 \sec 2\alpha = \tan \beta + \frac{1}{2}$	$-\cot_{\pi}\beta$, then the value	of $(\alpha + \beta) = \pi$	π
	a) $\frac{\pi}{2}$	b) $\frac{\pi}{3}$	c) $\frac{\pi}{4}$	d) $\frac{\pi}{6}$
37)	In ΔABC , $a = 2b$ and	d A = 3B, then angle A	A equals:	Ŭ
	a) 30°	b) 60°	c) 90°	d) 120°
38)	If the function $f: R \rightarrow R$	$\rightarrow R$ is defined by $f(x)$	$= 2x + \cos x$, then f is	is:
,	a) has a minimum at :	$x = \pi$	b) has a maximum at	x = 0
	c) is a decreasing fund	ction	d) is an increasing fur	nction
39)	$\int_{1}^{1} \frac{1-x}{x} dx$ equals		5	
~~,	$J_{0} + x$	1.) 1 010	$\rightarrow \sqrt{2}$ let $2 = 4$	J) 2 1 2 + 4
	a) $2 \log 2 - 1$	b) $1 - 2 \log 2$	c) $\sqrt{2} \log 2 - 1$	a) $2 \log 2 + 1$

40)	$\int \tan^{-1} \sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}} dx =$	
	a) $x + c$	b) $\frac{x^2}{2} + c$
	c) $-x + c$	d) $\frac{-x^2}{2} + c$
41)	If $y = a \sin mx + b \cos mx$, then $\frac{d^2y}{dx^2}$ is equ	al to:
	a) $m^2 y$	b) $-m^2 y$
	c) my	d) - <i>my</i>
42)	$\lim_{x \to \frac{\pi}{2}} \left(\frac{1 - \tan x}{1 - \sqrt{2} \sin x} \right) =$	
	a) -2 b) 2	c) -1 d) 0
43)	If the function $f(x) = \frac{\sin 3x}{x}$ $(x \neq 0) = \frac{k}{2}$ w	hen $x = 0$ is continuous at $x = 0$, then $k =$
	a) 2 b) 4	c) 6 d) 3
44)	In Joule's law of heating, heat produced is d	lirectly proportional to:
	a) current	b) square root of current
	c) square of current	d) independent of current
45)	Internal energy of real gas depends on:	
,	a) Volume	b) Temperature
	c) Pressure	d) Volume and Temperature
46)	The dimension of Planck constant is same a	s that of:
,	a) Angular momentum	b) Linear momentum
	c) Energy	d) Resistance
47)	If an object of mass 'm' is moving in a circ	ular path with uniform speed 'v', which of the following
,	changes occurs in half revolution?	
	a) kinetic energy changes by $\frac{mv^2}{2}$	b) kinetic energy changes by mv^2
	c) momentum changes by $2mv$	d) momentum does not changes
48)	The time taken to move from mean position	to half of amplitude in SHM is:
	a) $\frac{T}{-}$	b) $\frac{T}{T}$
		12
	$c)\frac{1}{3}$	$a) \frac{1}{9}$
49)	An excess electron is on a spherical body of	area 2 mm^2 . The surface charge density is:
	a) 4×10^{-12}	b) 8×10^{-12}
	c) 4×10^{-14}	d) 8×10^{-14}
50)	An electric dipole is kept in a uniform electric	ric field. It experiences:
	a) a force and a torque	b) a torque but no force
	c) a force but not torque	d) neither force nor torque
51)	Velocity of a light in vacuum depends upon	:
	a) frequency	b) wavelength
	c) amplitude	d) none of these
52)	To detect the obstacles in their path, bats pro-	oduce:
	a) infrasonic waves	b) ultrasonic waves
	c) radio waves	d) gamma waves
53)	The phenomenon only associated with trans	verse wave is:
	a) reflection	b) refraction
	c) polarization	d) interference
54)	"Water proofing" agent changes the angle o	f contact from:
	a) obtuse to acute angle	b) acute to obtuse angle
	c) obtuse to 90°	d) acute to 90°

55)	A coil with its horizontal axis is perpendicular to the magnetic field. The angle between magnetic fiel			
	and the plane of coi	l when induced emf	is maximum is:	
	a) 90°	b) 45°	c) 30°	d) 0°
56)	A girl presses her j	physics text book a	gainst a rough vertica	al wall with her hand. The direction of
	frictional force on th	ne book exerted by t	he wall is:	
	a) downwards		b) upwards	
	c) out from the wall		d) into the wall	
57)	A PN junction diode	e can be used as:		
	a) rectifier	b) capacitor	c) inductor	d) impedance
58)	In β -emission from	a radioactive substa	nce, an electron is eje	cted. This electron comes from:
	a) the outermost orb	it of an atom	b) the innermost	orbits of an atom
	c) the surface of a su	ubstance	d) the nucleus of	f an atom
59)	A lens behaves as a	converging lens in a	ir and diverging lens i	n water. The refractive index of material
	of lens is:			
	a) equal to air		b) equal to water	r
	c) more than air and	less than water	d) more than wa	ter
60)	The velocity of photo	to electrons emitted	in photoelectric effect	t depends on:
	a) wavelength of inc	cident light	b) intensity of in	cident light
	c) photoelectric curr	rent	d) both b and c	

Section-B (2 marks)

Read the following passages and answer the questions given below (61-64):

Photosynthesis is the process that plants use to convert sunlight into the food that they need to survive and grow. Most plants create some form of sugar from the sunlight, and this sugar is used by the plant as its primary food source

Plants actually need only three things to create this sugar: sunlight, carbon dioxide, and water. The sunlight reacts with the plant's chlorophyll, a green chemical which is used to convert water and carbon dioxide into sugar.

As a general rule, photosynthesis occurs in a plant's leaves. The leaf contains chlorophyll, which reacts when sunlight strikes the leaf. It is also the chlorophyll which gives the leaf its typical green color, since photosynthesis absorbs most light rays except green, which are reflected outwards.

The process of photosynthesis produces more than just sugar, however. One byproduct of the process is oxygen, which is "exhaled" by the plant into the atmosphere. In fact, plant photosynthesis is one of the primary sources of oxygen generation on our planet, making plant life essential to almost all living things on earth.

61) According to paragraph 4, which of the following is a byproduct of photosynthesis?

- a) green pigment b) water
- c) carbon dioxide d) oxygen

62) The underlined word essential, as used in paragraph 4, most nearly means

- a) necessary b) optional
- c) fragrant d) growing
- 63) The passage explains that photosynthesis is:
 a) done in the plant stem.
 b) what makes plants edible.
 c) the way that plants feed themselves.
 d) the source of carbon dioxide in the atmosphere.
- 64) After reading the passage, what can you infer about photosynthesis?
 - a) Human life would not survive without plants.
 - b) Chlorophyll tastes sweet.
 - c) Sunlight has both good and bad effects on plants.
 - d) Too much water can interfere with photosynthesis.

65)	An element (X) which occurs in the second period has an outer electronic configuration s^2p^1 , what is the formula and nature of its oxide?			
	a) <i>XO</i> ₃ , basic	b) X_2O_3 , basic		
	c) XO_3 , acidic	d) X_2O_3 , acidic	10	
66)	The solubility product of a salt having gener	ral formula MX_2 in wa	ter is 4×10^{-12} . The concentration	
	of M^{2+} ions in the aqueous solution of the s	alt is:		
	a) 2×10^{-6} M	b) 1×10^{-4} M		
	c) $1.6 \times 10^{-4} M$	d) 4×10^{-10} M		
67)	If $E^{\circ}_{Fe^{2+}/Fe} = -0.441$ V and $E^{\circ}_{Fe^{3+}/Fe^{2+}}$ $Fe + 2Fe^{3+} \rightarrow 3Fe^{2+}$ will be:	= 0.771 V, the standar	d emf of the reaction	
	a) 1.653 V b) 1.212 V	c) 0.330 V	d) 0.111 V	
68)	In the following reaction, $CaCl_2 \xrightarrow{H_2O} P \xrightarrow{hot in}$	$\xrightarrow{ron \ tube} Q \xrightarrow{CH_3Cl,AlCl_3} R,$	the product 'R' is:	
,	a) benzene	b) ethyl benzene	-	
	c) toluene	d) n-propyl benzene		
69)	2 g of metal carbonate is neutralized compl	letely by 100 mL of 0.	1 N HCl. The equivalent weight of	
	metal carbonate is:			
	a) 50 b) 100	c) 150	d) 200	
70)	The electrons identified by quantum numbe (i)	rs n and l:		
	(1) $n=4$, $l=1$ (11) $n=4$, $l=0$	(111) n=3, l=2	(1V) n=3, l=1	
	can be placed in order of increasing energy $(iii) \in (iii) \in (iii)$	as: b) (ii) \leq (iv) \leq (i) \leq (ii)	::\	
	a) $(iv) < (ii) < (iii) < (ii)$	b) (II) $<$ (IV) $<$ (I) $<$ (I		
71)	(1) < (11) < (11) < (11)	(III) > (IV) > (III) > (III)	(1) When excess of this gas reacts with	
/1)	NH_{3} , an unstable trihalide is formed. In this	process, the oxidation	state of nitrogen changes from:	
72)	a) -3 to $+3$ b) -3 to 0	c) -3 to +5 2^{2} 0 and 0 a^{2} - 0 and	d = 0 = 0 = 0	
12)	The area of triangle formed by the lines $4x$	-9xy - 9y = 0 and	dx = 2 is:	
73)	a) $10/5$ b) $20/5$ The point of intersection of tangents at the	C) 2	u) 5 rectum of the parabola $y^2 - 4x$ is	
13)	equal to:	end points of the fatus	Tectum of the parabola $y = 4x$ is	
	a) $(1, 0)$ b) $(0, 1)$	c) $(-1, 0)$	d) (0, -1)	
74)	Equation of a plane passing through $(1, -3, 3x + 3y + 2z = 8$ is:	-2) and perpendicular	to the planes $x + 2y + 2z = 5$ and	
	a) $2x + 4y + 3z + 16 = 0$	b) $2x - 4y - 3z + 8$	= 0	
	c) $2x - 4y + 3z - 8 = 0$	d) $2x + 4y - 3z - 1$	6 = 0	
75)	If \vec{a} , \vec{b} and \vec{c} are vectors of magnitude 3, 4	and 5 respectively and	$\vec{a} \perp (b + \vec{c}), b \perp (\vec{c} + \vec{a}) \text{ and } \vec{c} \perp$	
	$(\vec{a} + \vec{b})$, then $ \vec{a} + \vec{b} + \vec{c} $ is:			
	a) 50 b) $5\sqrt{2}$	c) 1	d) 25	
76)	The lines $2x - 3y - 5 = 0$ and $3x - 4y - 3y - 5 = 0$	7 = 0 are the diamete	rs of a circle with area 49π square	
	units. Then the equation of circle is:		-	
	a) $x^2 + y^2 + 2x - 2y = 67$	b) $x^2 + y^2 + 2y - 2x$	x = 47	
	c) $x^2 + y^2 + 2x - 2y = 47$	d) $x^2 + y^2 - 2x + 2y^2$	y = 62	
77)	If $\cos^{-1} x + \cos^{-1} y = \frac{\pi}{2}$, and $\tan^{-1} x - \tan^{-1} x = \tan^{-1} x$	If $\cos^{-1} x + \cos^{-1} y = \frac{\pi}{2}$, and $\tan^{-1} x - \tan^{-1} y = 0$, then $x^2 + xy + y^2 = 0$		
	a) 0 b) $\frac{1}{\sqrt{2}}$	c) $\frac{3}{2}$	d) $\frac{1}{8}$	
78)	The range of $f(x) = \sin^{-1}(\sqrt{x^2 + x + 1})$ i	s:		
	a) $(0, \frac{\pi}{2})$	b) $(0, \frac{\pi}{3})$		
	c) $\left[\frac{\pi}{2}, \frac{\pi}{2}\right]$	d) $\left[\frac{\pi}{2}, \frac{\pi}{2}\right]$		
	´ L2´3」	′L6′3]		

	x+4 x x			
79)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
	a) $(x+4)^3$	41	b) $4(x + 4)$	
	c) $16(3x + 4)$		d) $x^2(x+4)$	
80)	If a, b, c are in G.P., a	a, x, b are in A.P. and b	o, y, c are in A.P., then	$\frac{1}{x} + \frac{1}{y} =$
	a) 2b	b) $\frac{2}{h}$	c) <i>a</i> + <i>c</i>	d) 2 <i>b</i> – <i>a</i>
81)	The number of word	ls which can be forme	d using letters of the	word 'ARRANGE' so that vowels
	always occupy even j	places, is:	-	
	a) 144	b) 156	c) 72	d) 36
82)	$log_e n + \frac{(log_e n)^3}{3!} + \frac{(log_e n)^3}{3!}$	$\frac{\log_e n^{3}}{5!} + \cdots \infty =$		
	a) $\frac{n^2-1}{n^2-1}$	5.	b) $\frac{n^2+1}{n^2+1}$	
	2n n(n-1)		2n n(n+1)	
	c) $\frac{n(n-2)}{2n}$	_	d) $\frac{n(n+2)}{2n}$	
83)	The value of $\lim_{t \to \infty} \frac{1}{(1-t)^2}$	$\frac{-\sqrt{x}}{-1}$ is:		
	a) 4 $x \to 1$ (cos	b) $1/2$	c) 2	d) 1/4
84)	If $v = \sec(\tan^{-1} x)$.	then $\frac{dy}{dx}$ at $x = 1$ is:	- /	
/	a) $\cos \frac{\pi}{4}$	b) $\sin \frac{\pi}{2}$	c) $\sin\frac{\pi}{6}$	d) $\cos \frac{\pi}{3}$
85)	$\int \left(\frac{x+2}{x+4}\right)^2 e^x dx =$	L	0	5
	a) $e^{x}\left(\frac{x}{x}\right) + c$		b) $e^{x}(\frac{x+2}{x+2}) + c$	
	$x = \frac{x+4}{x+4}$		(x+4)	
	c) $e^{x}\left(\frac{1}{x+4}\right) + c$		d) $e^{x}\left(\frac{1}{x+4}\right) + c$	
86)	The area of the rectar	igle bounded by $ x =$	2, the x-axis and $y =$	1 (in square units) is:
87)	a) 2 A ball is thrown verti	D) 3 cally upwards with a w	c) 4 $\frac{1}{20}$ m/s from	d) b the top of a multistorey building 25
07)	m high. The time take	en by the ball to reach	the ground is:	the top of a multistorey bundling 25
	a) 2s	b) 3s	c) 5s	d) 7s
88)	The ceiling of a hall	is 40 m high. For maxi	mum horizontal distan	ice, the angle at which the ball may
	be thrown with a spee	ed of 56 m/s without hi	tting the ceiling of the	hall is:
00)	a) 90°	b) 30°	c) 45°	d) 60°
89)	A solid cylinder of ma	ass M and radius R roll	s without slipping dow	n an inclined plane making an angle
	θ with the horizontal	$(h)^{2} \propto \sin \theta$	18. $(2)^2 \propto \sin \theta$	d) ² a cin 0
	a) $\frac{1}{3}g \sin\theta$	b) $\frac{-}{3}g\sin\theta$	c) $\frac{-g}{5}$ g sin θ	a) $\frac{1}{7}g\sin\theta$
90)	The escape speed of a speed. The speed of t	a body on the Earth's st he body when it escape	urface is 11.2 km/s. A es the gravitational pul	body is projected with thrice of this l of Earth is:
	a) 11.2 km/s	b) $22.4\sqrt{2}$ km/s	c) $\frac{22.4}{\sqrt{2}}$ km/s	d) 22.4 km/s
91)	At what velocity does	water emerge from an	orifice in a tank in whi	ch gauge pressure is $3 \times 10^5 Nm^{-2}$
,	before the flow starts	? (density of water $= 1$	1000 kgm ⁻³)	
	a) 24.5 m/s	b) 14.5 m/s	c) 34.5 m/s	d) 44.5 m/s
92)	Two moles of an ide	al monoatomic gas oc	cupy a volume 2V at t	temperature 300 K. It expands to a
	volume 4V adiabatica	ally, then the final temp 1 > 1 > 0	perature of a gas is:	N 210 V
03)	a) 1/9 K A stratched wire em	D) 189 K its a fundamental not	c) 199 K a of 256 Hz Keeping	d) 219 K the stretching force constant and
73)	reducing the length of	f wire by 10 cm the fi	equency becomes 320) Hz, the original length of the wire
	is:			
	a) 100 cm	b) 50 cm	c) 400 cm	d) 200 cm

94) Two condensers, one of capacity C and other of capacity C/2 are connected to a V volt battery, as shown in the figure. The work done in fully charging both the condensers is:

95) A wire of resistance 12 ohms per meter is bent to form a complete circle of radius 10 cm. The resistance between its two diametrically opposite points, A and B as shown in the figure is:

(
^ -)• B
\sim	
a) (30)	

- a) 3Ω b) $6\pi \Omega$ c) 6Ω d) $0.6\pi \Omega$ 96) A solenoid has core of a material with relative permeability 500 and its windings carry a current of 1 A. The number of turns of the solenoid is 500 per metre. The magnetization of the material is: a) $2.5 \times 10^3 Am^{-1}$ b) $2.5 \times 10^5 Am^{-1}$ c) $2.0 \times 10^3 Am^{-1}$ d) $2.0 \times 10^5 Am^{-1}$
- 97) An alternating supply of 220 V is applied across a circuit with resistance 22 Ω and impedance 44 Ω. The power dissipated in the circuit is:
 a) 1100 W
 b) 550 W
 c) 2200 W
 d) (2200/3) W
- 98) In a compound microscope, the focal length of two lenses are 1.5 cm and 6.25 cm. If an object is placed at 2 cm from objective and the final image is formed at 25 cm from the eye lens. The distance between the two lenses is:
 - a) 6 cm b) 7.75 cm c) 9.25 cm d) 11 cm
- 99) In Young's double slit experiment, distance between two sources is 0.1 mm. The distance of screen from the source is 20 cm. Wavelength of light used is 5460 Å. Then, angular position of the first dark fringe is:
- a) 0.08° b) 0.16° c) 0.20° d) 0.31° 100)The energy required to excite an electron in hydrogen atom to its first excited state is:
a) $8.5 \, \text{eV}$ b) $10.2 \, \text{eV}$ c) $12.7 \, \text{eV}$ d) $13.6 \, \text{eV}$

Thank You!!!!!!