

INSTITUTE OF ENGINEERING

Model Entrance Exam

(Set-13)

Instructions:

There are 100 multiple-choice questions, each having four choices of which only one choice is correct.

Date: 2080/05/09 (August-26) Duration: 2 hours Time: 8 AM – 10 AM

Section-A (1 marks)

1)	The number of recom	mendations made by h	er mentioning.		
		b) have been worth	c) is worth	d) were worth	
2)	I needed hard	for the exams.			
	a) working	b) work	c) to working	d) to work	
3)	While Mother was co	oking dinner, I	for my exams.		
	a) studied	b) study	c) had studied	d) was studying	
4)	The manager would r	ather at his off	c) had studied ice than stayed at home	e last week.	
	a) have worked	b) work	c) had worked	d) working	
5)	Don't take advantage	the situation.			
	Don't take advantage a) of	b) for	c) at	d) with	
6)	"To hit below the belt	t" means			
	a) attack suddenly		b) criticize somebody		
	c) find a weak spot		d) use unfair means		
7)		"Do you imitate others			
	a) Are others imitated		b) Are others being in	nitated by you?	
	c) Were others being	imitated by you?	d) Have others been in	mitated by you?	
8)	Auspicious (Antonym				
			c) sinister	d) timely	
9)	Grotesque (Synonym)				
		b) eccentric		d) realistic	
10)		sentence into complex	sentence.		
	"My ambition is to se				
		t I should serve my cou	<u> </u>		
	· · · · · · · · · · · · · · · · · · ·	t I shall serve my coun	try.		
	c) To serve my country				
		is my great ambition.			
11)		ous' has a stress on its		1) (101	
10)	a) second	b) third	,	d) fifth	
12)		ng does not have /℧/s		1) 11	
	a) put		c) boot		
13)	If ABC is an equilateral triangle of side 'a', then the value of \overrightarrow{AB} . \overrightarrow{BC} + \overrightarrow{CA} . \overrightarrow{CB} is equal to:				
	a) $\frac{3a^2}{2}$	b) $3a^2$	c) $\frac{-3a^2}{a^2}$	d) $\frac{3a^2}{4}$	
14)	4	$x^2 + y^2 = 0 \text{ in th}$	_	′ 4	
17)	a) x-axis	b) y-axis	c) z-axis	d) both a and b	
	$-1 \qquad x^2 \qquad y^2$	x^2	v^2	d) both a and b	
15)	The ellipse $\frac{1}{25} + \frac{1}{16} =$	1 and hyperbola $\frac{1}{25}$ –	$\frac{y^2}{16} = 1$ have in commo	n:	
	a) centre, foci and dir		b) centre only		
	c) centre and vertices	only	d) centre, foci and ver		
16)	If the line $2x + y + \lambda$	L = 0 is a normal to the	e parabola $y^2 = -8x$, t	then $\lambda =$	
	a) 12	b) -12	c) 24	d) -24	
17)		$le r^2 = 2 - 4r \cos \theta +$			
	a) (2, 3)		b) (-2, 3)		
	c) (-2, -3)		d) (2, -3)		
18)			ometrical parameters sh		
	a) 1	b) 2	c) 3	d) 4	
19)	Let E be the set of all integers with 1 at their unit places. The probability that a number chosen from				
	$\{2, 3, 4, \dots, 50\}$ is an ϵ			2	
	a) $\frac{5}{49}$	b) $\frac{4}{49}$	c) $\frac{3}{49}$	d) $\frac{2}{49}$	
	49	49	49	47	

20)	If $\sin \theta + \cos \theta = \sin \theta$	10.01 10.01 10.01 10.01 10.01 10.01 10.01	s equal to:		
	a) $\frac{\pi}{6}$	b) $\frac{\pi}{3}$	c) $\frac{\pi}{4}$	d) $\frac{\pi}{2}$	
21)	If $\sec^{-1} x = \csc^{-1} y$, then the value of $\cos^{-1} \frac{1}{x} + \cos^{-1} \frac{1}{y}$ is:				
	a) $\frac{\pi}{4}$	b) $\frac{\pi}{6}$	c) $\frac{\pi}{2}$	d) π	
22)	$\lim_{x \to 0} \frac{e^x - e^{-x}}{\sin x} =$	-			
	a) 1	b) -1	c) 3	d) 2	
23)	A function defined by	$y f(x) = \frac{ x-2 }{(x-2)}$ is:			
	a) continuous at $x =$	(** -)			
	b) discontinuous at x				
	c) continuous at $x = 2$ and discontinuous at $x = -2$				
24)	d) continuous on \Re If $y = e^{\sqrt{2x}}$, then $\frac{dy}{dx}$:	_			
24)		_	1/2x	_	
	a) $\frac{e^{\sqrt{2x}}}{\sqrt{2x}}$	b) e^{2x}	c) $\frac{e^{\sqrt{2x}}}{2}$	d) $\sqrt{2}e^{\sqrt{2x}}$	
25)	$\int \frac{1 + \cos^2 x}{\sin^2 x} dx =$		-		
2 5)	a) $-\cot 2x - 2x + c$		b) $-2 \cot x - 2x + c$		
	c) $-2 \cot x - x + c$		$d) -2 \cot x + x + c$		
26)	$\int_0^a \frac{dx}{a^2 + x^2} =$				
		b) π	c) $\frac{\pi}{}$	d) $\frac{\pi}{4a}$	
27)	The function $v = x^3$	b) $\frac{\pi}{2a}$ + $3x^2 - 9x + 2$ has pe	oint of inflection at:	4a	
_,,	a) $x = -2$	777 - 1145 P	b) $x = 3$		
	c) $x = \frac{1}{2}$		d) $x = -1$		
28)	<u> </u>	subsets of a non-empty	set is:		
	a) 1	b) 4	c) 3	d) 2	
29)		tion $f(x) = e^x + 1$ is:	a) (0 aa)	d) (oo oo)	
20)		b) R – {0}	c) (0, ∞)	$d) (-\infty, \infty)$	
30)		en its characteristic roo			
21)	a) 1, 5		c) 1, -5	d) -1, 5	
31)	If $x + iy = (a - ib)$,		_ 1	AV a. 1. 2b	
22)			c) $\frac{1}{a+ib}$	d) a + ib	
32)	p and q are the roots (a) -1	of the equation $x^2 + pc$ b) 1	q = (p + 1)x. Then, then, then	e value of q is: d) 2	
33)	<i>'</i>	istor is doped the heav		u) 2	
,	a) acts as a supplier o	-	b) dissipates maximum	m power	
2.4	c) has a larger resistar		d) has a small resistar	nce	
34)		atter wave is independe		d) charge	
35)	a) mass b) velocity c) momentum d) charge To observe diffraction, the size of the obstacle:			u) charge	
,	a) should be $\lambda/2$, where λ is the wavelength				
	b) should be of the order of wavelength				
	c) has no relation to wavelength				
36)	d) should be much larger than the wavelength Which of the following is associated with refraction of light?				
20)	a) working of optical	_	_	apparent and real depth of a pond	
	c) mirage on hot sum		d) brilliance of diamo		

27)	When on ac valence	of 220 Wie applied to	the composition C them.	
37)	When an ac voltage of 220 V is applied to the capacitor C, then:			
	a) the maximum voltage between plates is 220 V.b) the current is in phase with the applied voltage.			
			th the applied voltage.	
		the capacitor per cycl		
38)		=	nagnetic field with its p	plane perpendicular to the field. An
	emf is induced in the	-		
	a) rotated about its a	xis	b) rotated about a dia	
	c) not moved		d) given translational	motion in the field
39)	A test charge is mov	ed from lower potentia	al point to a higher pote	ential point. The potential energy of
	test charge will:			
	a) remain the same	b) increase	c) decrease	d) become zero
40)	When a string fixed a	at its both ends vibrate	in 1 loop, 2 loops, 3 lo	ops and 4 loops, the frequencies are
	in the ratio:			-
	a) 1: 1: 1: 1	b) 1:2:3:4	c) 4: 3: 2: 1	d) 1: 4: 9: 16
41)				h frequency f when the lift is at rest.
,			uency of oscillation bec	
	a) zero	b) f	c) 2f	d) infinite
42)		,	,	k are each decreased by 100 K. The
,	efficiency of the eng		cores or source and sin	is are each decreased by 100 II. The
	a) increases		c) remains constant	d) becomes 1
43)			ial and volume expansi	
43)				
	a) $\frac{r}{\alpha} = \frac{1}{2}$	b) $\frac{r}{v} = \frac{1}{3}$	c) $\frac{\gamma}{\alpha} = \frac{3}{2}$	d) $\frac{r}{\alpha} = \frac{r}{\beta}$
44)	A body is just floating	g on the surface of liqu	uid. The density of the	body is same as that of the liquid. If
		oushed down, then it w		· ·
			b) remain submerged	where it is left
	c) sink in liquid	1	d) come out vigorous	
45)		ect under the gravitati	,	her object, which of the following
	quantities is not cons			,
	a) Angular momentu		b) Mass of an object	
	c) Total mechanical		d) Linear momentum	
46)	The displacement of	a body is given to be t		e of time elapsed. The magnitude of
- /	acceleration of the body is:			
	a) increasing with tir	-	b) decreasing with tin	me
	c) constant but not ze		d) zero	
47)	When water is cooled		a) 201 0	
.,,	a) increases	b) decreases	c) remains same	d) becomes zero
48)		· ·	n a face-centered cubic	· · ·
,	a) 14	b) 8	c) 6	d) 4
49)	· ·	,	of g of Na_2CO_3 will be:	
,	a) 6.02×10^{22}	b) 12.04×10^{22}	c) 1.806×10^{23}	d) 31.8×10^{28}
50)		· ·	maximum number of el	
50)	a) 2	b) 6	c) 0	d) 14
51)		smallest bond angle is	ŕ	u) 11
01)	a) NCl_3	b) $AsCl_3$	c) SbCl ₃	d) PCl_3
52)		pared by the action of		-/3
~ - /	a) Cu	b) Pb	c) Fe	d) Hg
53)	· ·	,	is obtained in a fused s	, .
,	a) smelting	b) roasting	c) calcination	d) froth floatation
	,	,	,	,

54)	The products formed when an aqueous solution of NaBr is electrolyzed in a cell having inert electrodes				
	are:		1) N 10		
	a) Na and Br ₂		b) Na and O ₂		
	c) H ₂ , Br ₂ and NaOH	I	d) H_2 and O_2		
55)	Thermodynamically, the most stable form of carbon is:				
	a) diamond	b) graphite	c) fullerenes	d) coal	
56)	Passivity of iron is due to the formation of:				
	a) Fe_2O_3	b) Fe_3O_4	c) FeSO ₄	d) $Fe(OH)_3$	
57)	In Lassaigne's test, red colour precipitate is obtained which is due to the formation of:				
	a) FeCNS		b) Fe(CNS) ₂		
	c) NaCNS		d) $Fe(CNS)_3$		
58)	Dehydration of alcohol is an example of which type of reaction?				
	a) substitution		b) Elimination		
	c) Addition		d) Rearrangement		
59)	Which of the following does not form sodium bisulphite addition product with sodium bisulphite				
	solution?				
	a) HCHO		b) C ₆ H ₅ COCH ₃		
	c) C ₆ H ₅ CHO		d) CH ₃ CHO		
60)	Which one of the following is the most basic in nature?				
	a) NH_3	_	b) <i>CH</i> ₃ <i>NH</i> ₂		
	c) $(CH_3)_2NH$		d) $(CH_3)_3N$		

Section-B (2 marks)

Read the following passages and answer the questions given below (61-64):

Theodore Roosevelt was born with asthma and poor eyesight, yet this sickly child later won fame as a political leader, a Rough Rider, and a hero of the common people. To conquer his handicaps, Teddy trained in a gym and became a lightweight boxer at Harvard. Out west, he hunted buffalo and ran a cattle ranch. Back east, he became a civil service reformer and police commissioner. He became President McKinley's assistant Navy secretary during the Spanish-American War. Also, he led a charge of cavalry Rough Riders up San Juan Hill in Cuba. After achieving fame, he became governor of New York and went on to become the vice president.

When McKinley was assassinated, Theodore Roosevelt became the youngest president at age 42. He is famous for his motto, "Speak softly and carry a big stick." Roosevelt battled for meat inspection and purefood laws. Also, he wanted to save the forests and break the grip that big business had on steel and oil. Roosevelt persuaded the diplomats of warring Russia and Japan to make peace.

- 61) Which of the following states the main idea of the passage?
 - a) Theodore Roosevelt was a man of many accomplishments.
 - b) Presidents should speak softly and carry big sticks.
 - c) Presidents can help countries make peace.
 - d) A governor can become a president.
- 62) What achievement illustrates Roosevelt's ability to overcome personal obstacles?
 - a) He led a charge of cavalry Rough Riders in Cuba.
 - b) He is famous for his motto, "Speak softly and carry a big stick."
 - c) He overcame his asthma by training in a gym, and he became a boxer.
 - d) He became governor of New York.
- 63) According to the passage, how did Roosevelt first become president?
 - a) He won the support of his party in a political campaign.
 - b) As vice president, he took over the presidency when McKinley was assassinated.
 - c) He won the nation's popular vote.
 - d) He won the necessary Electoral College votes.

	a) 10.21 s	b) 14.43 s	c) 5.31 s	d) 7.43 s	
82)	The wavelength of	radiation emitted is λ_0	when an electron jun	nps from the third to second orbit of	
	hydrogen atom. For	the electron jumping f	rom the fourth to the se	econd orbit of the hydrogen atom, the	
		tion emitted will be:		•	
	a) $(16/25)\lambda_0$		c) $(27/20)\lambda_0$	d) $(25/16)\lambda_0$	
83)	, , , , , , , , , , , , , , , , , , ,			b, it is found that the reflected ray is	
,	_	d. The velocity of ligh	_	,	
		•	c) $2 \times 10^8 \text{ m/s}$	d) $3 \times 10^8 \text{ m/s}$	
84)				illateral triangular prism and suffers	
04)		_		<u> </u>	
		. If the refractive ind	ex of the material of	the prism is $\sqrt{3}$, then the angle of	
	incidence is:	1 > 4.50	\ 0.00	1) 20%	
0.5)	a) 60°	b) 45°	c) 90°	d) 30°	
85)			_	iform magnetic field of 0.5 T normal	
				torque experienced by the coil is:	
	a) 1.5 Nm	b) 2.5 Nm	c) 3.5 Nm	d) zero	
86)				e of the battery is 0.8Ω , the maximum	
		lrawn from the battery			
	a) 30 A	b) 32 A	c) 33 A	d) 34 A	
87)				surface charge density σ . The electric	
			ce x from its centre is:	_	
	a) inversely proporti	ional to σ	b) directly proportion		
	c) directly proportio	onal to R	d) inversely proport	tional to x^2	
88)	A train standing at the	he outer signal of a rail	lway station blows a wi	histle of frequency 400 Hz in still air.	
	The train begins to	move with a speed of	30 m/s towards the p	latform. The frequency of the sound	
	heard by an observe	r standing on the platf	orm is (speed of sound	1 in air = 330 m/s:	
	a) 420 Hz	b) 430 Hz	c) 440 Hz	d) 450 Hz	
89)	The temperature of	'n' moles of an ideal	gas is increased from	T to 4T through a process for which	
	pressure $P = aT^{-1}$,	where 'a' is a constan	t. Then, the work done	e by the gas is:	
	a) nRT	b) 4 <i>nRT</i>	c) 2 <i>nRT</i>	d) 6 <i>nRT</i>	
90)	A steel wire can su	pport a maximum loa	ad of W before reachi	ng its elastic limit. How much load	
	another wire, made out of identical steel, but with a radius one half the radius of the first wire, support				
	before reaching its e				
	a) W	b) W/2	c) W/4	d) 4W	
91)	When a solid spher	re rolls without slipp	ing down an inclined	plane making an angle θ with the	
	horizontal, the acceleration at its centre of mass is a . If the same sphere slides without friction, its				
	acceleration a' will			,	
	a) $\frac{7}{2}a$	b) $\frac{5}{7}a$	c) $\frac{7}{5}a$	d) $\frac{5}{3}a$	
0.2)	L	/	ລ	Z	
92)				ch that it hits the target on the ground	
			values of the time takei	n by it to hit the target in two possible	
	ways, the product t_1	· -			
	a) R/g	b) R/4g	c) R/2g	d) 2R/g	
93)		n is burnt with 0.56 g	O_2 in a closed vessel.	Which reactant is left in excess and	
	how much?				
	a) Mg, 0.16 g		c) Mg, 0.44 g	·	
94)			medium, bromate ion	is formed. The oxidation state of Mn	
	changes from +7 to:				
	a) +6	b) +4	c) +3	d) +2	
95)				n of N_2O_4 and NO_2 at equilibrium are	
			ectively. The value of <i>k</i>		
	a) $3.3 \times 10^2 \text{ mol L}^{-1}$		b) $3 \times 10^{-3} \text{ mol L}^{-3}$		

c) $3 \times 10^{-2} \text{mol L}^{-1}$

- d) $3 \times 10^3 \text{ mol L}^{-1}$
- What current is to be passed for 0.25 sec for the deposition of certain weight of metal which is equal to its electrochemical equivalent?
 - a) 4 A
- b) 100 A
- c) 200 A
- d) 2 A
- A metal X on heating in nitrogen gas gives Y. Y on treatment with water gives a colourless gas which when passed through CuSO₄ solution gives a blue colour. Y is:
 - a) $Mg(NO_3)_2$
- b) Mg_3N_2
- c) NH₂
- d) MgO
- 98) When conc. H_2SO_4 is heated with P_2O_5 , the acid is converted into:
 - a) sulphur trioxide
 - b) a mixture of sulphur dioxide and sulphur trioxide
 - c) sulphur
 - d) sulphur dioxide
- 99) The IUPAC name of the following compound is:

- a) 1-fluoro-4-methyl-2-nitrobenzene
- b) 4-fluoro-1-methyl-3-nitrobenzene
- c) 4-methyl-1-fluoro-2-nitrobenzene
- d) 2-fluoro-5-methyl-1-nitrobenzene
- 100) In the following sequence of reactions,

 $CH_3CH_2OH \xrightarrow{P+I_2} A \xrightarrow{Mg,ether} B \xrightarrow{HCHO} C \xrightarrow{H_2O} D$, the compound D is:

- a) propanal
- b) butanal
- c) n-butyl alcohol
- d) n-propyl alcohol

Thank You!!!!!!