

INSTITUTE OF ENGINEERING

MODEL ENTRANCE EXAM

(SET - 4)

Instructions:

There are 100 multiple-choice questions, each having four choices of which only one choice is correct.

Date: 2081/03/01 (June 15)

Duration: 2 hours **Time**: 8 A.M. – 10 A.M.

SECTION – **A** (1 marks) (1*60 = 60)

1)	We had to stop all other work to complete our assignment.				
	a) All other work has to be stopped by us to complete our assignment.				
	b) All other work had stopped by us to complete our assignment.				
	c) All other work had to be stopped by us to complete our assignment.				
	d) All other work v	was stopped by us	to complete our assignm	ient.	
2)	His most trusted fr	iend proved to be	a snake in the grass.		
	a) cowardly and brutal		b) an unreliable	and deceitful person	
	c) a hidden enemy		d) low and mear	1	
3)	Rectitude (Synony	m):	•		
		b) integrity	c) rectification	d) recovery	
4)	Puerile (Antonym)	:	•	,	
,	a) inquisitive		c) impure	d) original	
5)	Transform the follo		, -	, 2	
,	"I can never forget		C		
	a) Could I never fo		b) Can I ever for	rget vou?	
	c) Can you be forg	~ .		d) Is it that I would never forget you?	
6)	The best punctuation			8 3	
-,	"The sales manage				
	a) The sales' mana				
	b) The "sales mana				
	c) The sales manag				
	d) The sale's mana		_		
7)	A series of events		_		
<i>')</i>		b) has	c) are	d) were	
8)	A judge should de	o) nas al equal in	c) are	d) were	
0)	À judge should dea a) out	b) in	c) with	d) into	
9)		/	c) with	d) into	
9)	This torcha) is holding		c) hold	d) holded	
10)	,	· ·	· · · · · · · · · · · · · · · · · · ·	a) noided	
10)	The correct transcr			d) /ho.m/	
11)	a) /bə'lu: n/				
11)	• • • • • • • • • • • • • • • • • • • •			ond tour.	
	a) would took	_	b) shall take		
10)	c) would have took		d) would take		
12)	We couldn't get hi			1) ' 1	
12)	a) to sign	b) sign	c) signing	d) signed	
13)	Methoxy propane and Ethoxy ethane are:				
	a) chain isomers		b) position isom		
4.45	c) metamers d) functional isomers				
14)	The IUPAC name	_		0.5	
	a) But-1-en-3-yne	b) But-1-yn-3-	,	ne d) But-1-yn-3-ene	
15)	Chlorination of Be	-			
	a) Nucleophilic sul		, -	b) Electrophilic substitution	
	c) Free radical substitution d) Electrophilic addition				
16)	Which of the following does not undergo aldol condensation reaction?				
	a) <i>CH</i> ₃ <i>CHO</i>		b) $(CH_3)_3CHO$		
	c) CH_3CH_2CHO		d) $CH_3COC_6H_5$		
17)	Which of the follow	wing molecules ha	s trigonal planar geomet	=	
	a) IF ₃	b) PCl ₃	c) NH ₃ d) BF ₃	

18)	The number of atom	s in 0.1 mole of a triate	omic gas is $(N_A = 6.02)$	$3 \times 10^{23} \text{ mol}^{-1}$):	
,	a) 6.026×10^{22}		c) 3.6×10^{23}	d) 1.8×10^{22}	
19)	Which of the follow	ing salts will give high	,	,	
ŕ	a) KCl	b) NaCl	c) Na ₂ CO ₃	d) CuSO ₄	
20)	Which of the follows	ing electronic configura	ation of an atom has the	lowest ionization enthalpy?	
	a) $1s^2$, $2s^22p^6$		b) $1s^2$, $2s^22p^3$		
	c) $1s^2$, $2s^22p^5$, $3s^1$		d) $1s^2$, $2s^22p^4$		
21)	The oxidation state of	of Cr in CrO ₅ is:	· -		
	a) -6	b) +12	c) +6	d) + 4	
22)	How many Cl^- ions	are there around Na^+	ion in NaCl crystal?		
	a) 3	b) 4	c) 6	d) 8	
23)	Gold and silver are	extracted from their res	pective ores by:		
	a) leaching	b) smelting	c) roasting	d) hydrometallurgy	
24)	Which allotrope of p	phosphorous produces p	phosphorescence?		
	a) scarlet	b) red	c) black	d) white	
25)	Which of the follow	ing is not a thermodyna	amic function?		
	a) internal energy		c) enthalpy	d) entropy	
26)	-	when ozone reacts with	h mercury is:		
	a) HgO	b) Hg_2O_2	c) Hg_2O	d) HgO_2	
27)		ing statement is a wron			
	a) Power set of a given set is always non-empty.				
	· -	• •	ivalent sets may not be	equal.	
	, <u> </u>	ection is well-defined.			
	· -		A implies A is always a	null set.	
28)	If $arg(z) < 0$ for a a	complex number z, ther	arg(-z) - arg(z) is:	_	
	a) π	b) $-\pi$	c) $-\frac{\pi}{2}$	d) $\frac{\pi}{2}$	
29)	Let A be a matrix of	Forder 3 and Δ denotes	the value of the determ	inant A. Then $det(-2A)$ is:	
	a) -2Δ	b) 2Δ	c) 8 Δ	d) -8Δ	
30)	If $\sin A = \sin B$, \cos	$sA = \cos B$; then the value	alue of A in terms of B	is:	
ŕ	a) $n\pi + B$		b) $n\pi + (-1)^n B$		
	c) $2n\pi + B$		d) $2n\pi - B$		
31)	Angle between the p	pair of lines $y^2 sin^2 \theta$ +	$xy \sin 2\theta + x^2(\cos^2\theta)$	-1) = 0 is:	
	a) $\frac{\pi}{2}$	b) $\frac{\pi}{2}$	c) $\frac{\pi}{4}$	d) $\frac{2\pi}{3}$	
22)	3	· Z	4	3	
32)	The conditional statement $p \Rightarrow q$ is equivalent to: a) p is true and q is false b) p is false and q is true				
	/ I		, .		
	c) p is false and q is	, .	d) p is true and q is tr	ue	
22)	If the function $f(x)$	$\int \frac{\sin 3x}{x} x \neq 0$.			
33)	If the function $f(x)$	$=\begin{cases} \frac{k}{k} & \text{is:} \end{cases}$			
		\ =			
	a) 3	b) 6	c) 9	d) 12	
34)	$\int \frac{x^3}{1+x^8} dx =$				
	11%		1) 1 ton-14		
	a) $4 \tan^{-1} x^3 + c$		b) $\frac{1}{4} \tan^{-1} x^4 + c$		
	c) $x + 4 \tan^{-1} x^4 +$	c	d) $x^2 + \frac{1}{4} \tan^{-1} x^4 +$	c	
35)	Derivative of sinh ⁻¹	x with respect to x is:	7		
,	a) $\frac{1}{\sqrt{1+x^2}}$	1	b) $\frac{1}{\sqrt{1-x^2}}(x < 1)$		
	VITA		V 1 .Λ		
	c) $\frac{1}{\sqrt{x^2-1}}(x > 1)$		$d) \frac{1}{x\sqrt{1+x^2}} (x \neq 0)$		

36)	If $\vec{i} - \vec{j}$ and $\vec{j} + \vec{k}$ are the given vectors, then which of the following vectors can f with them taken in order?				
	a) $2\vec{i} - \vec{j} + \vec{k}$	b) $\vec{i} + \vec{k}$	c) $-\vec{i} - \vec{k}$	d) $\vec{j} - 2\vec{k}$	
37)	$\lim_{x\to 5} \sqrt{x-5} =$				
	a) 0	b) -5	c) 5	d) does not exist	
38)		ential equation $xdy - \frac{1}{2}$		4 14 11	
	a) rectangular hyperb		b) straight line passin		
39)	$\int \sin^{-1} x dx + \int \cos^{-1} x dx$	rtex is at origin	d) circle whose centre	e is at origin	
37)	a) 0	b) $\frac{\pi}{2} + c$	α) π $\gamma \perp c$	$d) \pi \perp c$	
40)		L	4		
40)			p with positive x-axis in π		
	a) α	b) $\frac{\pi}{2} + \alpha$	4	d) $\pi - \alpha$	
41)		space, 2x + 3y + 5 =			
	a) plane to x-axis		b) plane to y-axis		
40)	c) plane to z-axis		d) straight line		
42)	If $S_n = n^3 - 10$, then	$t_{10} = 0.03$	c) $11^3 - 10^3$	1) 2000 (L	
43)	,	,	,	is the probability that it is a	
4 3)	multiple of 5?	ocica nom 1 to 20, a	ticket is drawn. What	is the probability that it is a	
	a) 1/5	b) 4/5	c) 1/4	d) ¾	
44)	The principal value of	,	,	,	
	a) $\frac{5\pi}{4}$	b) $-\frac{\pi}{4}$	c) $\frac{\pi}{4}$	d) $\frac{3\pi}{4}$	
45)	4	mmetrical distribution	T	f the data are 6λ and 9λ	
	a) 8λ	b) 7λ	c) 6λ	d) 5λ	
46)	$\frac{1}{2!} + \frac{1+2}{3!} + \frac{1+2+3}{4!} + \cdots$	· ∞ =			
	a) e/2	b) e/3	c) e/4	d) e/5	
47)	For a particle performing uniform circular motion, choose the incorrect statement from the				
	following:				
	a) Magnitude of particle velocity (speed) remains constant.				
	b) Particle velocity remains directed perpendicular to radius vector.c) Direction of acceleration keeps changing as particle moves.				
10)	-	leration does not remain			
48)	a) static friction	ng is a self-adjusting for	b) Rolling friction		
	c) Sliding friction		d) Dynamic friction		
49)		f a wire depends upon:			
,	a) length of the wire	1 1	b) radius of the wire		
	c) material of the wir	e	d) shape of the cross-	section of wire	
50)	After terminal veloci	ty is reached, the accel	eration of a body fallin	ng through a viscous fluid is	
	a) zero	b) equal to g	c) less than g	d) more than g	
51)		which of the following s	statement is correct?		
	a) change in internal		4 in marray = 11.1 =		
	b) the system returns to its initial state and it is reversible c) the total heat absorbed by the system is not equal to work done by the system				
	d) change in internal		of equal to work done	by the system	
	a, change in internal	-11015y 13 Ze10			

52)	For transmission	For transmission of heat from one place to the other, medium is required in:				
	a) conduction	b) convection	c) radiation	d) both (a) and (b)		
53)		waves in a fluid is:				
	a) directly propo	a) directly proportional to the square root of bulk modulus of the medium				
	,		nodulus of the medium	l		
	, , ,	ortional to the density				
	d) inversely prop	portional to the density	y of the medium			
54)	If dielectric cons	tant and dielectric stre	ngth be denoted by K a	and X respectively, then a material		
	suitable for use as a dielectric in a capacitor must have:					
	a) high K and hi	~	b) high K and lo			
	c) low K and hig	•	d) low K and lo	w X		
55)		With increase in temperature, the conductivity of:				
	,	a) metals increases and of semiconductor decreases				
	· · · · · · · · · · · · · · · · · · ·	b) semiconductor increases and of metals decreases				
	,	c) in both metals and semiconductors increases				
		d) in both metal and semiconductor decreases				
56)	_	_	-	t. These two fields are parallel to		
		each other. A charged particle is released from rest in this region. The path of the particle wil				
	be:	1 > 11'	\ 1 - 1'	15 1 . 1.		
<i>57</i>)	a) circle	b) ellipse	c) helix	d) straight line		
57)		When the rate of change of current is unity, the induced emf is equal to:				
	· /		/	b) number of turns in coil		
5 0)	c) coefficient of self-inductance d) total flux linked with coil					
58)	The final image in an astronomical telescope with respect to object is:					
	a) virtual and erect		/	b) real and erect		
50)	c) real and inverted d) virtual and inverted When the complete Young's double slit experiment is immersed in water, the fringes:					
59)				b) become wider		
	· ·		d) disappear	51		
60)	c) become narrower d) disappear In the Bohr model of the hydrogen atom, the lowest orbit corresponds to:			rresponds to:		
00)	a) infinite energy			b) maximum energy		
	c) minimum ene	•	d) zero energy	icigy		
	c) illillillidill clic	159	u) zero energy			
		SECTION 1	R(2 marks) (2*40-8)	0)		

<u>SECTION – B (2 marks)</u> (2*40=80)

Read the following passages and answer the questions given below (61-64):

The capitalist system of society does not foster healthy relations among human beings. A few people own all the means of production and others-though nominally few have to sell their labour under conditions imposed upon them. The emphasis of capitalism being on the supreme importance of material wealth the intensity of its appeal is to the acquisitive intensity. It promotes worship of economic power with little regard to the means employed for its acquisition and the end that it serves. By its exploitation of human beings to the limits of endurance its concentration is on the largest profit rather than maximum production.

Thus the division of human family is done on the basis of economic circumstance. All this is injurious to division of human dignity. And when the harrowed poor turn to the founders of religion for succour, they rather offer a subtle defence of the established order. They promise future happiness for their present suffering and conjure up visions of paradise to redress the balance to soothe the suffering and the revolt of the tortured men. The system imposes injustice, the religion justifies it.

61)	The passage indicates that the c a) fair b) ambiti	± •	d) dehumanising			
62)		, I I	d) denumanising			
02)	The established order is supported by religion to: a) alleviate the suffering of the poor in the capitalist system.					
	b) perpetuate the injustice impo	· · · · · · · · · · · · · · · · · · ·				
	c) balance the suffering of the p	· · ·	ards			
	d) help the tortured men to seek	<u> </u>	44			
63)	Capitalism is injurious to huma		scoiety into two groups, i.e.:			
<i>(2)</i>	a) working and non-working	b) exploiters and	· · ·			
	c) religious and irreligious	d) buyers and se	<u> </u>			
64)	In a capitalistic system of society, each man wishes:					
- /	a) to acquire maximum wealth	b) to produce m	aximum wealth			
	c) to have visions of practice	, <u>-</u>	sufferings of other			
65)	$A \xrightarrow{PCl_5} B \xrightarrow{alc.KOH,\Delta} C \xrightarrow{H_2O/H^+} D. V$	$A \xrightarrow{PCl_5} B \xrightarrow{alc.KOH,\Delta} C \xrightarrow{H_2O/H^+} D$. What is D in the given reaction, if A is a 1° alcohol which gives				
	positive Iodoform test.	<u> </u>				
	a) CH_3CH_2OH	b) <i>CH</i> ₃ <i>CH</i> (<i>OH</i>)	CH_3			
	c) $CH_2 = CH_2$	d) CH_3CH_2Cl				
66)	The increasing order of basic st	rength is:				
	a) $CH_3NH_2 > (CH_3)_2NH > (C$	a) $CH_3NH_2 > (CH_3)_2NH > (CH_3)_3N > NH_3$				
	b) $(CH_3)_2NH > CH_3NH_2 > (CH_3)_2NH > CH_3NH_2 > (CH_3)_2NH > CH_3NH_2 > (CH_3)_2NH > (CH_3)$	$(H_3)_3 N > NH_3$				
	c) $(CH_3)_2NH > (CH_3)_3N > CH_3$	$H_3NH_2 > NH_3$				
	d) $NH_3 > (CH_3)_2 NH > (CH_3)$	$_3N > CH_3NH_2$				
67)	p ^H of a saturated solution of Ca	$(OH)_2$ is 9. The solubility pro	oduct (K_{sp}) of $Ca(OH)_2$ is:			
	a) 0.25×10^{-10} b) 0.125	$\times 10^{-15}$ c) 0.5×10^{-10}	d) 0.5×10^{-15}			
68)	Standard electrode potential of t	Standard electrode potential of three metals X, Y and Z are -1.2 V, +0.5 V, -3.0 V respectively.				
	The reducing power of these metals will be:					
	a) $X > Y > Z$	b) $Z > X > Y$				
	c) $X > Y > Z$	d) $Y > Z > X$				
69)	The rate of diffusion of methan	,	ice that of a gas X. The			
0)	molecular weight of X is:					
	a) 64 b) 32	c) 4	d) 2			
70)			f A changes from 0.1 M to 0.025			
	M in 40 minutes. The rate of reaction when the concentration of A is 0.01 M is:					
	a) 1.73×10^{-5} M/min	b) 3.47×10^{-4}	M/min			
	c) 3.47×10^{-5} M/min d) 1.73×10^{-4} M/min					
71)	The correct order of electron af					
	a) $N < O < Cl < Al$		b) $0 < N < Al < Cl$			
	c) $Al < N < 0 < Cl$	d) $Cl < N < 0$	d) $Cl < N < 0 < Al$			
72)	When chlorine is passed over d	ry slaked lime at room temper	rature, the main reaction product			
	is:					
	a) $Ca(ClO_2)_2$ b) $CaCl_2$	c) CaOCl ₂	d) $Ca(OCl)_2$			
73)	The mean deviation of the num	bers 3, 4, 5, 6, 7 is:				
	a) 0 b) 1.2	c) 5	d) 25			
74)	For $a \neq b$, if equation $x^2 + ax + b = 0$ and $x^2 + bx + a = 0$ have a common root, then the					
	value of $(a + b)$ is:					
	a) -1 b) 0	c) 1	d) 2			
75)	=	-	the numerals 0, 1, 2, 3, 4 and 5			
	without repetition. The total number of ways in which this can be done is:					

0.5			1		
93)		A refrigerator with coefficient of performance $\frac{1}{3}$ releases 200 J of heat to a hot reservoir. Then			
	400	working substance is:	200		
	a) $\frac{100}{3}$ J	b) 100 J	c) $\frac{200}{3}$ J	d) 150 J	
94)	A transverse harmon	ic wave on a string is	described by $y(x,t) =$	$= 3\sin\left(36t + 0.018x + \frac{\pi}{4}\right)$	
	where x and y are in	cm and t is in second.	Which of the following	statements is incorrect?	
		ling in negative x-direc	ction.		
	b) The amplitude of t				
	c) The speed of the w	•			
	d) The frequency of t	κ			
95)				R_2 . A charge is placed at the	
			harge density on the in		
	a) $\frac{q}{4\pi R_1^2}$	170711	c) $\frac{q}{4\pi R_2^2}$	$d) \frac{-q}{4\pi R_2^2}$	
96)		-	•	naving 3 wires of resistances	
		by the corner R. Then, t	the currents i_1 and i_2 re	espectively are:	
	→ 6A				
	$\lessgtr 2\Omega$				
	i ₁ , P				
	2Ω 2Ω 2Ω				
	No of the same of				
	Q Q Q Q Q Q Q Q Q Q				
	a) 2 <i>A</i> , 4 <i>A</i>	b) 4 <i>A</i> , 2 <i>A</i>	c) 1 <i>A</i> , 2 <i>A</i>	d) 2 <i>A</i> , 3 <i>A</i>	
97)	A 90 cm long solenoi	id has six layers of win	dings of 450 turns each	. If the diameter of solenoid	
		t carried is 6A, then th	e magnitude of magne	tic field inside the solenoid,	
	near its centre is:		1) 60 10-4 T		
	a) $50\pi \times 10^{-4} \text{ T}$		b) $60\pi \times 10^{-4} \text{ T}$		
98)	c) $72\pi \times 10^{-4}$ T	s are to be manufactur	d) $80\pi \times 10^{-4}$ T	active index 1.55 with both	
90)	Double convex lenses are to be manufactured from a glass of refractive index 1.55, with both faces of same radius of curvature. What is the radius of curvature required if the focal length				
	is to be 20 cm?				
	a) 11 cm	b) 22 cm	c) 7 cm	d) 6 cm	
99)				ly on a slit of width d. If the	
	distance between the slits and the screen is 0.8 m and the distance of 2 nd order maximum from				
		en is 15 mm. The widt		1) 200	
100)	a) 40 µm The power gain for a	b) 80 µm	c) 160 µm	d) 200 µm	
100)		he power gain for common base amplifier is 800 and the voltage amplification factor is 840. he collector current when base current is 1.2 mA is:			
	a) 24 mA	b) 12 mA	c) 6 mA	d) 3 mA	
	, - ·	-, - -	-,	,	