

INSTITUTE OF ENGINEERING

MODEL ENTRANCE EXAM

(SET - 6)

Instructions:

There are 100 multiple-choice questions, each having four choices of which only one choice is correct.

Date: 2081/03/15

(June 29)

Duration: 2 hours **Time**: 8 A.M. – 10 A.M.

SECTION – **A** (1 marks) (1*60 = 60)

1)	Three sets A, B, C are such that $A = B \cap C$ and $B = C \cap A$, then:			
	a) $A \subset B$	b) $A \supset B$	c) $A = B$	d) $A \subset B'$
2)	A square non-singula	or matrix A satisfies A^2		
	a) $I - A$	b) $\frac{1}{2}(I - A)$	c) $I + A$	d) $\frac{1}{2}(I + A)$
3)	_	nn be made by 5 flags f		_
	a) ⁸ C ₅	b) ${}^{8}C_{5} \times 5!$		d) 8 ⁵
4)	The area of the triangle is 40 cm^2 and its perimeter is 8 cm, then the radius of inscribed circle			
	is: a) 20 cm	b) 10 cm	c) 15 cm	d) 12 cm
5)		b) 10 cm re event and impossibl	,	
3)	a) 0, 1	b) 1, 0		
6)				ose diameters are $x + y = 6$
	and $x + 2y = 4$ is:		_	
	a) 10	b) $2\sqrt{5}$	c) 6	d) 4
7)	The value of $\lim_{n\to\infty} \frac{1^3+}{n^3+}$	$\frac{2^3 + \dots + n^3}{4}$ is:		
,	a) $1/2$	n ⁴ b) 1	c) 1/4	d) 1/8
8)	′	,	,	change of its radius, then its
,	radius is equal to:	1	1	,
	a) 1 unit	b) $\sqrt{2\pi}$ unit	c) $\frac{1}{\sqrt{2\pi}}$ unit	d) $\frac{1}{2\sqrt{z}}$ unit
9)	$\int \frac{1}{\sqrt{x^2+2}} d(x^2+2)$ is		γ2π	Σγπ
))	$\int \sqrt{x^2+2} u(x-1/2) \mathrm{d} s$	equal to.	. 1	n o / 0 - 0
	a) $2\sqrt{x^2 + 2 + c}$	b) $\sqrt{x^2 + 2} + c$	c) $\frac{1}{(x^2+2)^{3/2}} + c$	d) $2\sqrt{x^2 + 2 + c}$
10)	The non-zero vectors and \vec{c} , is:	\vec{b} and \vec{c} are related by	$\vec{a} = 8\vec{b}$ and $\vec{c} = -7\vec{b}$	\vec{a} . Then the angle between \vec{a}
	a) 0	b) $\pi/4$	c) $\pi/2$	d) π
11)			at Im (=) > 0 There are	rg (z) is equal to:
11)	Let z be a purely ima			
	a) π	b) $\pi/2$	c) 0	d) $-\pi/2$
11)12)	a) π The angle between the	b) $\pi/2$ ne lines $x = \alpha$ and $y =$	c) 0 β is:	d) $-\pi/2$
12)	a) π The angle between the a) $ \alpha - \beta $	b) $\pi/2$ ne lines $x = \alpha$ and $y =$ b) $\sin^{-1}(\alpha - \beta)$	c) 0 β is: c) $\tan^{-1}(\alpha - \beta)$	d) $-\pi/2$ d) $\pi/2$
	a) π The angle between the a) $ \alpha - \beta $ Distance between the	b) $\pi/2$ he lines $x = \alpha$ and $y = \beta$ b) $\sin^{-1}(\alpha - \beta)$ he parallel planes $x + y$	c) 0 β is: c) $\tan^{-1}(\alpha - \beta)$ $+ z + 3 = 0$ and $2x + \beta$	d) $-\pi/2$ d) $\pi/2$ 2y + 2z + 5 = 0 is:
12) 13)	a) π The angle between the a) $ \alpha - \beta $ Distance between the a) 2	b) $\pi/2$ he lines $x = \alpha$ and $y = \beta$ b) $\sin^{-1}(\alpha - \beta)$ he parallel planes $x + y$ b) $\frac{1}{2}$	c) 0 β is: c) $\tan^{-1}(\alpha - \beta)$	d) $-\pi/2$ d) $\pi/2$
12) 13)	a) π The angle between the a) $ \alpha - \beta $ Distance between the	b) $\pi/2$ he lines $x = \alpha$ and $y = \beta$ b) $\sin^{-1}(\alpha - \beta)$ he parallel planes $x + y$ b) $\frac{1}{2}$	c) 0 β is: c) $\tan^{-1}(\alpha - \beta)$ $+ z + 3 = 0$ and $2x + \beta$	d) $-\pi/2$ d) $\pi/2$ 2y + 2z + 5 = 0 is:
12) 13)	a) π The angle between the a) $ \alpha - \beta $ Distance between the a) 2 A function $f(x) = \frac{1}{x^2}$ a) continuous at $x = \frac{1}{x^2}$	b) $\pi/2$ he lines $x = \alpha$ and $y = \beta$ b) $\sin^{-1}(\alpha - \beta)$ he parallel planes $x + y$ b) $\frac{1}{2}$ $\frac{1}{-5}$ is :	c) 0 β is: c) $\tan^{-1}(\alpha - \beta)$ $+ z + 3 = 0$ and $2x + \beta$	d) $-\pi/2$ d) $\pi/2$ 2y + 2z + 5 = 0 is:
12) 13)	a) π The angle between the a) $ \alpha - \beta $ Distance between the a) 2 A function $f(x) = \frac{1}{x^2}$ a) continuous at $x = x$	b) $\pi/2$ he lines $x = \alpha$ and $y = 0$ b) $\sin^{-1}(\alpha - \beta)$ he parallel planes $x + y$ b) $\frac{1}{2}$ $\frac{1}{-5}$ is: $\frac{1}{5}$	c) 0 e β is: c) $\tan^{-1}(\alpha - \beta)$ + $z + 3 = 0$ and $2x + c$) $\frac{1}{2\sqrt{3}}$	d) $-\pi/2$ d) $\pi/2$ 2y + 2z + 5 = 0 is:
12) 13)	a) π The angle between the a) $ \alpha - \beta $ Distance between the a) 2 A function $f(x) = \frac{1}{x^2}$ a) continuous at $x = x$ b) discontinuous at $x = x$ c) continuous at every	b) $\pi/2$ he lines $x = \alpha$ and $y = \beta$ b) $\sin^{-1}(\alpha - \beta)$ he parallel planes $x + y$ b) $\frac{1}{2}$ $\frac{1}{-5}$ is :	c) 0 e β is: c) $\tan^{-1}(\alpha - \beta)$ + $z + 3 = 0$ and $2x + c$) $\frac{1}{2\sqrt{3}}$	d) $-\pi/2$ d) $\pi/2$ 2y + 2z + 5 = 0 is:
12) 13) 14)	a) π The angle between the a) $ \alpha - \beta $ Distance between the a) 2 A function $f(x) = \frac{1}{x^2}$ a) continuous at $x = x$ b) discontinuous at $x = x$ c) continuous at every d) continuous on R	b) $\pi/2$ he lines $x = \alpha$ and $y = b$) $\sin^{-1}(\alpha - \beta)$ he parallel planes $x + y$ b) $\frac{1}{2}$ $\frac{1}{-5}$ is: $\frac{1}{5}$ $\neq 5$ y point on R except at	c) 0 e β is: c) $\tan^{-1}(\alpha - \beta)$ + $z + 3 = 0$ and $2x + c$) $\frac{1}{2\sqrt{3}}$	d) $-\pi/2$ d) $\pi/2$ 2y + 2z + 5 = 0 is:
12) 13)	a) π The angle between the a) $ \alpha - \beta $ Distance between the a) 2 A function $f(x) = \frac{1}{x^2}$ a) continuous at $x = \frac{1}{x^2}$ b) discontinuous at $x = \frac{1}{x^2}$ c) continuous on R If $ax^2 + 2hxy + by$	b) $\pi/2$ he lines $x = \alpha$ and $y = 0$ b) $\sin^{-1}(\alpha - \beta)$ he parallel planes $x + y$ b) $\frac{1}{2}$ $\frac{1}{2}$ is: $\frac{1}{5}$ $\neq 5$ by point on R except at $\frac{dy}{dx} = 0$	c) 0 e β is: c) $\tan^{-1}(\alpha - \beta)$ + $z + 3 = 0$ and $2x + c$) $\frac{1}{2\sqrt{3}}$	d) $-\pi/2$ d) $\pi/2$ 2y + 2z + 5 = 0 is: d) $\frac{1}{\sqrt{3}}$
12) 13) 14)	a) π The angle between the a) $ \alpha - \beta $ Distance between the a) 2 A function $f(x) = \frac{1}{x^2}$ a) continuous at $x = \frac{1}{x^2}$ b) discontinuous at $x = \frac{1}{x^2}$ c) continuous at $x = \frac{1}{x^2}$ d) continuous on R If $ax^2 + 2hxy + by^2$ a) $-\frac{ax+by}{hx+by}$	b) $\pi/2$ he lines $x = \alpha$ and $y = b$) $\sin^{-1}(\alpha - \beta)$ he parallel planes $x + y$ b) $\frac{1}{2}$ $\frac{1}{-5}$ is: $\frac{1}{5}$ $\frac{1}{2}$ sy point on R except at $\frac{1}{2}$ = 1, then $\frac{dy}{dx}$ = b) $-\frac{2ax}{by}$	c) 0 f is: c) $tan^{-1}(\alpha - \beta)$ f f is: c) $tan^{-1}(\alpha - \beta)$ f f f f f f f f f f	d) $-\pi/2$ d) $\pi/2$ 2y + 2z + 5 = 0 is: d) $\frac{1}{\sqrt{3}}$
12) 13) 14)	a) π The angle between the a) $ \alpha - \beta $ Distance between the a) 2 A function $f(x) = \frac{1}{x^2}$ a) continuous at $x = \frac{1}{x^2}$ b) discontinuous at $x = \frac{1}{x^2}$ c) continuous at $x = \frac{1}{x^2}$ d) continuous on R If $ax^2 + 2hxy + by^2$ a) $-\frac{ax+by}{hx+by}$	b) $\pi/2$ he lines $x = \alpha$ and $y = b$) $\sin^{-1}(\alpha - \beta)$ he parallel planes $x + y$ b) $\frac{1}{2}$ $\frac{1}{-5}$ is: $\frac{1}{5}$ $\frac{1}{2}$ sy point on R except at $\frac{1}{2}$ = 1, then $\frac{dy}{dx}$ = b) $-\frac{2ax}{by}$	c) 0 f is: c) $tan^{-1}(\alpha - \beta)$ f f is: c) $tan^{-1}(\alpha - \beta)$ f f f f f f f f f f	d) $-\pi/2$ d) $\pi/2$ 2y + 2z + 5 = 0 is: d) $\frac{1}{\sqrt{3}}$
12) 13) 14)	a) π The angle between the a) $ \alpha - \beta $ Distance between the a) 2 A function $f(x) = \frac{1}{x^2}$ a) continuous at $x = \frac{1}{x^2}$ b) discontinuous at $x = \frac{1}{x^2}$ c) continuous at $x = \frac{1}{x^2}$ d) continuous on R If $ax^2 + 2hxy + by^2$ a) $-\frac{ax+by}{hx+by}$	b) $\pi/2$ he lines $x = \alpha$ and $y = b$) $\sin^{-1}(\alpha - \beta)$ he parallel planes $x + y$ b) $\frac{1}{2}$ $\frac{1}{-5}$ is: $\frac{1}{5}$ $\frac{1}{2}$ sy point on R except at $\frac{1}{2}$ = 1, then $\frac{dy}{dx}$ = b) $-\frac{2ax}{by}$	c) 0 f is: c) $tan^{-1}(\alpha - \beta)$ f f is: c) $tan^{-1}(\alpha - \beta)$ f f f f f f f f f f	d) $-\pi/2$ d) $\pi/2$ 2y + 2z + 5 = 0 is: d) $\frac{1}{\sqrt{3}}$
12) 13) 14) 15)	a) π The angle between the a) $ \alpha - \beta $ Distance between the a) 2 A function $f(x) = \frac{1}{x^2}$ a) continuous at $x = \frac{1}{x^2}$ b) discontinuous at $x = \frac{1}{x^2}$ c) continuous at every d) continuous on R If $ax^2 + 2hxy + by^2$ a) $-\frac{ax+by}{hx+by}$ The harmonic mean is: a) 2	b) $\pi/2$ he lines $x = \alpha$ and $y = b$) $\sin^{-1}(\alpha - \beta)$ he parallel planes $x + y$ b) $\frac{1}{2}$ $\frac{1}{-5}$ is: 5 $\neq 5$ y point on R except at $\frac{1}{2}$ b) $-\frac{2ax}{by}$ of the roots of the equals b) 4	c) 0 f β is: c) $tan^{-1}(\alpha - \beta)$ +z+3=0 and $2x+2c) \frac{1}{2\sqrt{3}}x=5c) \frac{h(x+y)}{ax+by}ation (5+\sqrt{2})x^2-(4x+2)$	d) $-\pi/2$ d) $\pi/2$ 2y + 2z + 5 = 0 is: d) $\frac{1}{\sqrt{3}}$ d) $\frac{y}{x}$ $4 + \sqrt{5}x + (8 + 2\sqrt{5}) = 0$ d) 8
12) 13) 14)	a) π The angle between the a) $ \alpha - \beta $ Distance between the a) 2 A function $f(x) = \frac{1}{x^2}$ a) continuous at $x = \frac{1}{x^2}$ b) discontinuous at $x = \frac{1}{x^2}$ c) continuous at every d) continuous on R If $ax^2 + 2hxy + by^2$ a) $-\frac{ax+by}{hx+by}$ The harmonic mean is: a) 2	b) $\pi/2$ he lines $x = \alpha$ and $y = b$) $\sin^{-1}(\alpha - \beta)$ he parallel planes $x + y$ b) $\frac{1}{2}$ $\frac{1}{-5}$ is: 5 $\neq 5$ y point on R except at $\frac{1}{2}$ b) $-\frac{2ax}{by}$ of the roots of the equals b) 4	c) 0 f β is: c) $tan^{-1}(\alpha - \beta)$ +z+3=0 and $2x+2c) \frac{1}{2\sqrt{3}}x=5c) \frac{h(x+y)}{ax+by}ation (5+\sqrt{2})x^2-(4x+2)$	d) $-\pi/2$ d) $\pi/2$ 2y + 2z + 5 = 0 is: d) $\frac{1}{\sqrt{3}}$ d) $\frac{y}{x}$ $4 + \sqrt{5}(x) + (8 + 2\sqrt{5}) = 0$

18)	If $x \in [0, 2\pi]$, then the	he solution set of the in	nequation $4\sin^2 x - 8$	$\sin x + 3 \le 0$, is:	
	a) $[0, \pi/6]$	b) $[0, 5\pi/6]$	c) $[5\pi/6, 2\pi]$	d) $[\pi/6, 5\pi/6]$	
19)	Family of curves y	$= Ax + A^3$ is represent	nted by the differentia	l equation of degree:	
,	a) 3	b) 2	c) 1	d) 0	
20)		nn of ${}^{n}C_0$, ${}^{n}C_1$,, ${}^{n}C_n$ i		-, -	
/		2^n	2^{n-1}	2^{n+1}	
	a) $\frac{1}{n}$		c) $\frac{2^{n-1}}{n}$	$d)\frac{2^{n+1}}{n}$	
21)	The oxidation num	ber of Iron in [Fe(H ₂ C	0) ₅ N0]SO ₄ is:		
	a) 1	b) 2	c) 3	d) 0	
22)	Which of the follow	wing contains both cov	alent and co-ordinate	bond?	
	a) CO	b) CO ₂	c) CaCl ₂	d) C_2H_6	
23)	The substance which	ch causes permanent ha	ardness in water is:		
	a) NaCl	b) NaHCO ₃	c) MgCl ₂	d) K_2SO_4	
24)	When concentrated	H ₂ SO ₄ is added to dry	y KNO ₃ , brown fumes	evolve. These fumes are of:	
	a) SO_2	b) <i>SO</i> ₃	c) NO_2	d) <i>NO</i>	
25)	. 2	, 5	. 2	hen the electric current is	
,	switched on, the bulb is filled with:				
	a) Cl_2	b) <i>H</i> ₂	c) NH_3	d) an inert gas	
26)	The purpose of sme	, -	3	.,	
20)	a) reduce the ore	8	b) oxidize the ore		
	c) obtain an alloy		d) separate volatile	e impurities	
27)		eacts with zinc to form	<u> </u>	r	
,	a) $Zn(OH)_2$	b) <i>ZnO</i>	c) ZnH_2	d) Na_2ZnO_2	
28)	, , <u>, , , , , , , , , , , , , , , , , </u>		- =	e number of carbon atoms	
_0)	present in the signa		-18-10 11118. A 11110 10 1111	- 1101110 01 01 012 0 011 000 1110	
		b) 0.502×10^{20}	c) 5.62×10^{23}	d) 5.02×10^{20}	
29)		wing represent correct			
	a) 4, 3, 2, +1/2	b) 4, 2, 1, 0	c) 4, 3, -2, +1/2	d) 4, 2, 1, -1/2	
30)		cangement, the number			
30)	a) 8	b) 2	c) 1	d) 4	
31)	,	following is not a state	,	u) 4	
31)	a) Internal energy	b) Free energy	c) Work	d) Enthalpy	
32)	,			d) Enthalpy	
32)	A liquid decomposes at its boiling point. It can sublimation			b) steam distillation	
	,	on	d) fractional distill		
33)	c) vacuum distillation Chloroform on warming with Ag powder, g		,	,	
33)	a) C_2H_6	b) C_3H_6	c) C_2H_4	d) C_2H_2	
34)	Formalin is 40% ac		c) c ₂ 11 ₄	$\mathbf{u}_1 \mathbf{u}_2 \mathbf{u}_2$	
34)	a) methanoic acid	b) methanal	c) mathanol	d) mathanamina	
	,		c) methanol	d) methanamine	
35)	The dimensions of	physical quantity X in	the equation Force =	Density is given by:	
	a) $M^1L^4T^{-2}$	b) $M^2L^{-2}T^{-1}$	c) $M^2L^{-2}T^{-2}$	d) $M^1L^{-2}T^{-1}$	
36)	,			,	
/	If action and reaction forces are always equal in magnitude, then these forces: a) will produce accelerations of equal magnitudes				
	b) may not produce accelerations of equal magnitudes				
	c) produce velocities of equal magnitudes				
		accelerations of equal			
37)				f the total external force acting	
,	on the system is:	and of mass of the system		10101 01101101 10100 001115	
	a) minimum	b) maximum	c) unity	d) zero	
	-,	0, 111411114111	C) GIIICJ	-, LUI	

38)	In motion of an object under the gravitational influence of another object, which of the					
	following quantities is not conserved?	1) 6 1'				
	a) angular momentum	b) mass of an obje				
20)	c) total mechanical energy	d) linear momentu	ım			
39)	The circular motion of a particle with constant speed is:					
	a) periodic and simple harmonic	b) simple harmoni	-			
40)	c) neither periodic nor simple harmonic		-			
40)	Which of the following process is correct	Which of the following process is correct for given P-V diagram?				
	P •					
	V					
	a) Adiabatic process	b) Isothermal proc	ress			
	c) Isobaric process	d) Isochoric proce				
41)	If λ_m denotes the wavelength at which	, <u>*</u>				
11)	temperature T K is maximum, then:	on the radiative ening	sion from a stack sody at t			
	a) $\lambda_m \propto T$	b) $\lambda_m \propto T^{-1}$	b) $\lambda \propto T^{-1}$			
	c) $\lambda_m \propto T^{-2}$	d) λ_m is independent	ent on T			
42)	The phenomenon of beats can take place					
,	a) longitudinal waves only		b) transverse waves only			
	c) sound waves only		d) both longitudinal and transverse waves			
43)	The electric field at a point is:					
,	a) always continuous					
	b) continuous if there is no charge at that	t point				
	c) discontinuous if there is a charge at that point					
	d) both b and c are correct					
44)	The force between two parallel current c	arrying wires is indepe	endent of:			
	a) their distance of separation	b) the length of the	b) the length of the wires			
	c) the magnitude of currents	d) the radii of the	wires			
45)	Lenz's law is a consequence of the law of					
	a) charge b) energy		d) induced current			
46)	In Young's double slit experiment, if ye	ellow light is replaced	by blue light, the interference			
	fringes become:					
	a) wider b) brighter					
47)	When the velocity of an electron increase		length:			
	a) increases	b) decreases	1			
40)	c) remains same	d) may increase or				
48)	To obtain electrons as majority charge ca		= -			
40)	a) monovalent b) divalent c) trivalent d) pentavalent The number of recommendations made by her mentioning.					
49)						
50)	a) are worth b) have been worth I needed hard for the exams.	ii C) is wortii	d) were worth			
30)	a) working b) work	c) to working	d) to work			
51)	While Mother was cooking dinner, I		u) to work			
31)		c) had studied	d) was studying			
52)	The manager would rather at his					
~ - /	a) have worked b) work					
53)	Don't take advantage the situation	*	··/ ··· ·· · · · · · · · · · · · · · ·			
,	a) of b) for		d) with			

54)	"To hit below the b	oelt'' means				
	a) attack suddenly		b) criticize somebo	ody		
	c) find a weak spot	t	d) use unfair mean	S		
55)	The passive voice	of, "Do you imitate other	rs?" is:			
	a) Are others imita	-	b) Are others being	g imitated by you?		
	*	ng imitated by you?	d) Have others bee	• •		
56)	Auspicious (Anton		,	3 3		
/	a) favoring	b) fortunate	c) sinister	d) timely		
57)	Grotesque (Synony		c) 51115001	<i>a,</i> ()		
51)	a) graceful	b) eccentric	c) natural	d) realistic		
58)	, 0	,	*	d) realistic		
	Transform the given sentence into complex sentence. "My ambition is to serve the country."					
	a) My ambition is that I should serve my country.					
		b) My ambition is that I shall serve my country.				
	•	antry is my ambition.	nay.			
		try is my great ambition.				
59)		eneous' has a stress on its				
37)	a) second	b) third	c) fourth	d) fifth		
60)		wing does not have /ʊ/	•	d) IIIdi		
00)	a) put	b) wood	c) boot	d) could		
	a) put	<i>b)</i> wood	c) 500t	a) could		
		SECTION – B (2	<u>marks</u>) (2*40=80)			
61)	The function $f:[0,$	$(\infty) \to R$ given by $f(x)$	$=\frac{x}{x+1}$, is:			
	a) one-one and ont		b) one-one but not	onto		
	c) onto but not one	e-one	d) neither one-one	nor onto		
62)		ies $1 + 3x + 6x^2 + 10x$	$x^3 + \cdots \infty$, $ x < 1$ is:			
	a) $\frac{1}{(1-x)^2}$	b) $\frac{1}{1-x}$	$c)\frac{1}{}$	$d) \frac{1}{}$		
	()	- **	()	()		
63)		x^{30} in the expansion (1)				
		b) C(50, 29)				
64)			of n things taken r	at a time, then the expression		
	${}^{n}C_{r+1} + {}^{n}C_{r-1} + 2 {}^{n}C_{r} =$					
	,	$^{+2}C_{r+1}$ c) $^{n+1}C_{r+1}$,			
65)		at the two digit numbers	formed by digits 1,	2, 3, 4, 5 is divisible by 4 will		
	be:					
	a) 1/30	b) 1/20	c) 1/40	d) 1/5		
66)	If $\sin^{-1} x - \cos^{-1}$	$x = \frac{\pi}{\epsilon}$, then $x =$				
		· =	1	$\sqrt{3}$		
	a) $\frac{1}{2}$	Z	c) $-\frac{1}{2}$	$d) - \frac{\sqrt{3}}{2}$		
67)		assing through the point	(3, -2) and perpendic	cular to the lines $5x^2 - 8xy +$		
	$3y^2 = 0$ is:					
	a) $3x^2 - 8xy + 5y$	$y^2 - 2x - 4y - 1 = 0$	b) $3x^2 + 8xy + 5y$	$y^2 - 2x - 4y - 1 = 0$		
	c) $3x^2 + 8xy - 5$	$y^2 + 2x + 4y + 1 = 0$	d) $3x^2 + 8xy + 5$	$y^2 - 2x - 4y + 1 = 0$		
68)				2x + 3y = 1 touches it is:		
•	a) 4/3	b) 4	c) 8	d) 8/9		
		•				

BEATS

Read the following passages and answer the questions given below (97-100):

During last year's Christmas period, shops had less than half the number of visitors they had experienced just three years before. This drop demonstrates a fundamental shift in the way people are now shopping and buying.

Whilst there were concerns about online trading in the early days, this has declined now and as confidence in the internet continues to grow and grow, so too does online shopping. Consumers have busy lives and they are only getting busier. They have less time to visit the shops as they traditionally did. Whilst a trip to the shops is still regarded by many as an enjoyable past-time, it is also regarded as a luxury. By shopping online, consumers can shop when it suits them and can also use price comparison and review websites to ensure they are getting the best deal.

- 97) Which of the following would best replace the word 'fundamental' in the second sentence?
 - a) declining

b) major

c) worrying

- d) trending
- 98) Which of the following statement best describes the trend in online shopping?
 - a) At first, consumers thought it a great idea, but since then, they have become less sure.
 - b) Consumers cannot decide whether they prefer online or traditional shopping.
 - c) People have been forced to shop online in order to grab the best bargains.
 - d) People were initially wary about online shopping, but are more confident now.
- 99) Which of the following statements can be inferred from the passage? People now regard internet shopping as _____:
 - a) A way to fit more into their busy lives.
- b) An easier way to buy luxury goods.
- c) An expensive but useful way to shop.
- d) A way to avoid the Christmas crowds.
- 100) Which of the following statement is false, based on the information in the passage?
 - a) There appear to have been very few changes in the way people shop in the last few years.
 - b) There are still many people who enjoy taking a trip to the shops nowadays.
 - c) Price comparison websites can help shoppers research where the best deals are.
 - d) Shopping online creates opportunities to shop at a time that suits you.

❖❖❖❖ Thank You!!! ❖❖❖❖