BEATS ENGINEERING

INSTITUTE OF ENGINEERING

MODEL ENTRANCE EXAM

(Beats Test Series - Day 2)

Instructions:

There are 100 multiple-choice questions, each having four choices of which only one choice is correct.

Date : 2081/05/02 (August 18) **Duration** : 2 hours **Time :** 8 A.M. – 10 A.M.

<u>SECTION – A (1 marks)</u> (1*60 = 60)

1)	The phonetic symbol /or	:/ represents which v	owel sound?		
,	a) The vowel in "cot"	Ĩ	b) The vowel in "caug	ght"	
	c) The vowel in "cut" d) The vowel in "cat"				
2)	Which sentence has the correct word stress pattern?				
)	a) The 'contract is signe	d by the parties.	b) The con'tract is sig	ned by the parties.	
	c) The con'tract is signe	d by the parties.	d) The 'contract is sig	ned by the parties.	
3)	3) If I about the event I would have attended it				
2)	a) know b) knew	c) had known	d) will know	
4)	He said. "I will call you	e said "I will call you when I arrive "			
.,	a) He said that he will c	all me when he arriv	es.		
	b) He said that he would	d call me when he ar	rived		
	c) He said that he would	l call me when he arr	ives.		
	d) He said that he will c	all me when he arriv	ed.		
5)	Transform the following	y sentence into a neg	ative form: "She can s	ing well "	
2)	a) She can't sing well		b) She couldn't sing y	vell	
	c) She didn't sing well.		d) She can't singing v	vell	
6)	Identify the correct pas	ssive voice form for	the sentence: "The c	committee is reviewing the	
0)	proposal."				
	a) The proposal was rev	viewed by the commi	ttee.		
	b) The proposal is revie	wed by the committe	e.		
	c) The proposal is being reviewed by the committee				
	d) The proposal reviewe	ed by the committee.			
7)	I would like to th	ne new restaurant ton	ight.		
,	a) to go b) going	c) go	d) went	
8)	Select the correctly punctuated sentence.				
,	a) The book, which was on the table is missing.				
	b) The book which was on the table, is missing.				
	c) The book which was on the table is missing.				
	d) The book, which was	s on the table, is miss	ing.		
9)	He was accused	stealing the money.	C		
	a) with b) for	c) of	d) about	
10)	If someone is "in the same boat" as you, what does it imply?				
	a) They are in a difficult	t or challenging situa	tion as well		
	b) They are in agreemen	nt with you			
	c) They are traveling wi	ith you			
	d) They are ahead of yo	u in a competition			
11)	Coherent (Antonym):				
	a) Logical b) Consistent	c) Disjointed	d) Rational	
12)	Effervescent (Synonym)):			
	a) Flat b) Boring	c) Lively	d) Still	
13)	13) The truth value of the statement "if $(1 + 2i)^2$ is a complex number, then 4 is the real				
	a) F b) T	c) T or F	d) F and T	
14)	If $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, then the	e value of A ⁹ is:			
	a) $\begin{pmatrix} 1 & 0 \\ a & -1 \end{pmatrix}$ b	$\begin{pmatrix} 0 & -1 \end{pmatrix}$	c) $\begin{pmatrix} i & 0 \\ - & - \end{pmatrix}$	d) $\begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix}$	
	(0 1) $(-1 0)$ $(0 i)$ $(0 -1)$				
15)	The value of $\frac{a+b\omega+c\omega}{a\omega+b\omega^2+c}$ is:				
	a) 1 b) ω	c) ω^2	d) 0	

16)	If α , β are the roots $x^2 + px + q = 0$, then the value of $\alpha^3 + \beta^3$ is:			
	a) 3pq + p ³	b) 3pq – q ³	c) 3pq	d) p ³ – 3pq
17)	The value of $x^{1/2}$. $x^{1/2}$	$^{/4}$. $x^{1/8}$ ∞ is:		
	a) x	b) x^{2}	c) $1/x$	d) x^{3}
18)	In how many ways 3	letters can be posted in	n 4 letter boxes?	
	a) 56	b) 64	c) 76	d) 81
19)	The general solution	of $\tan 3x = 1$ is:		_
	a) $n\pi + \frac{\pi}{4}$	b) $\frac{\pi\pi}{3} + \frac{\pi}{12}$	c) nπ	d) $n\pi \pm \frac{n}{4}$
20)	The value of sin(cot ⁻	(-1x) is:		T
,	a) $\sqrt{1-x^2}$	b) x	c) $(1 + x^2)^{-3/2}$	d) $(1 + x^2)^{-1/2}$
21)	The angles of a triang	the sin the ratio 1:2:3	3. Then the sides are:	
,	a) 1: 2: $\sqrt{3}$	(b) 1: $\sqrt{2}$: $\sqrt{3}$	c) 1: $\sqrt{3}$: 2	d) 1: 2: $\sqrt{3}$
22)	If three line $3x - y =$	= 2,5x + ay = 3 and 2	2x + y = 3 are concurrent $2x + y = 3$	rent, then the value of a is:
,	a) 2	b) 3	c) -1	d) -2
23)	The equation $x^2 + y^2$	$x^{2} + 2x + 4y + k = 0$ r	represent a real circle it	f:
,	a) k < 5	b) $k = 5$	c) $k > 5$	d) $k = 1$
24)	Equation of the line j	oining the foci of the p	arabola $y^2 = 4x$ and x	$z^{2} = -4y$ is:
,	a) $x + y - 1 = 0$	b) $x - y - 1 = 0$	c) $x - y + 1 = 0$	d) $x + y + 1 = 0$
25)	Equation of a directri	x of the ellipse $\frac{x^2}{x} + \frac{y^2}{y^2}$	= 1 is	
23)	a) 0x 9 = 0	36 4	b) $9x = 0 = 0$	
	a) $9x - 6 = 0$		(0) = 0 = 0	
20	c) $\sqrt{2x} + 9 = 0$ The length of the new		d) $x + 9\sqrt{2} = 0$	
20)	The length of the perp $2\sqrt{2}$	$\frac{1}{8\sqrt{2}}$	(2, 5, 4) on the plane	$e^{3x} - 4y + 5z + 2 = 0$ is:
	a) $\frac{2\sqrt{2}}{3}$	b) $\frac{6\sqrt{2}}{5}$	c) 6√3	d) 4
27)	The probaility of not	getting black from a ba	ag containing 9 red, 7 v	white and 4 black is:
	a) 4/20	b) 4/5	c) 7/19	d) 3/5
28)	$\lim \frac{\sin x}{2} =$			
,	$x \to \infty$ x a) 0	b) 1	c) -1	d) does not exist
29)	The minimum value of	$5fr^2 + 4r + 5$ is:	c) -1	d) does not exist
27)	a) 1	h 0	c) -1	d) 2
20)	$\int_{0}^{0} x a^{x} dx =$	0)0		u) 2
30)	$J_1 x e u x -$	<i>p</i> +1		
	a) $e^2 - 1$	b) $\frac{c+1}{2}$	c) -1	d) 1
31) Solution of the differential equation $xdy - ydx = 0$ represents a:				
	a) circle	b) parabola	c) hyperbola	d) straight line
32)	If $ \vec{a} = 2$, $ \vec{b} = 5$ and	d $ \vec{a} \times \vec{b} = 8$, then $ \vec{a} $	$ \vec{b} $ is equal to:	
	a) 4	b) 6	c) 8	d) 10
33)	The correct dimension	nal formula for impuls	e is:	<i>,</i>
	a) ML^2T^{-2}	b) MLT ⁻¹	c) ML^2T^{-1} d) ML'	Γ^{-2}
34)	Which of the following	ng remains constant for	r a projectile fired from	n the earth?
	a) kinetic energy		b) momentum	
	c) horozontal compor	nent of velocity	d) vertical component	t of velocity
35)	With what minimum	acceleration can a fire	man slide down a rope	whose breaking strength is
	40% of his weight?	1 \ (0 / 7)	N (2 / 5)	1) (4/5)
20	a) $(1/5)$ g	b) (2/5) g	c) $(3/5)$ g	d) (4/5) g
36)	The surface energy of	t a drop of water of rad	ius r is proportional to	1) 4 /
	a) r^{3}	b) <i>r</i> ²	c) r	a) 1/r

37)	The presence of gravitational field is require	by:		
	a) conduction	b) stirring of liquids	-	
	c) natural convection	d) radiation		
38)	At absolute temperature, the translational kinetic energy of the molecules:			
	a) becomes zero	b) becomes maximun	1	
	c) becomes minimum	d) remains constant		
39)	There is no net transfer of energy by particles of medium in:			
,	a) longitudinal wave	b) transverse wave		
	c) progressive wave	d) stationary wave		
40)	The intensity of electric field between the p	plates of a charged con	denser having charge q and	
,	an area A will be:	-		
	a) qA/ϵ_0 b) q/ϵ_0A	c) A/q ϵ_0	d) $\varepsilon_0 A/q$	
41)	A charged particle is moving along a magne	tic field line. The magr	netic force on the particle is:	
	a) along its velocity	b) opposite to its velo	ocity	
	c) perpendicular to its velocity	d) zero		
42)	If 'N' is the number of turns in a circular co	il, then the value of sel	f inductance varies as:	
	a) N ⁰ b) N	c) N ²	d) N ⁻²	
43)	Critical angle of light passing from glass to	air is minimum for:		
	a) red colour b) green colour	c) yellow colour	d) blue colour	
44)	A spherical air bubble in water behaves as:			
	a) convex lens b) concave lens	c) concave mirror	d) plane mirror	
45)	Which of the following transitions in hydro,	gen atoms emit photon	s of highest frequency?	
	a) $n = 1$ to $n = 2$ b) $n = 2$ to $n = 6$	c) $n = 6$ to $n = 2$	d) $n = 2$ to $n = 1$	
46)	The electrical conductivity of p-type semico	onductor is determined	by the number of:	
	a) free electrons in the conduction band	b) electrons in the val	ence band	
	c) holes	d) impurity atoms alo	ne	
47)	When an electrons jump from lower to high	er orbit, the energy:		
	a) increase b) decreases	c) remains same	d) not definite	
48)	The bond angle formed by different hybrid	orbitals are in the order	r:	
	a) $sp^2 > sp^3 > sp$	b) $sp^3 > sp^2 > sp$		
	c) $sp^3 > sp > sp^2$	d) $sp > sp^2 > sp^3$		
49)	Oxidation state of chlorine in perchloric aci	d is:		
	a) -1 b) 0	c) -7	d) +7	
50)	Which of the following is not an example of	f molecular crystal?		
	a) Hydrogen b) Iodine	c) Ice	d) Sodium chloride	
51)	Which of the following is correct for the rea	action, $N_2(g) + 3H_2(g)$	$(z) \rightleftharpoons 2NH_3 (g)?$	
	a) $K_p > K_c$	b) $K_p < K_c$		
	c) $K_n = K_c$	d) Pressure is require	d to predict the corelation	
52)	Which one of the following is always not ne	egative?	1	
)	a) Enthalpy of combustion	b) Enthalpy of format	tion	
	c) Enthalpy of neutralization	d) Lattice enthalpy		
53)	Which of the following elements has maxin	num electron affinity?		
)	a) F b) Cl	c) Br	I (b	
54)	The metal used to recover copper from a so	lution of CuSO4 is:	,	
-)	a) Na b) Fe	c) Hg	d) Ag	
55)	When sodium is treated with sufficient oxy	pen/air. the product for	med is:	
,	a) Na ₂ O b) Na ₂ O ₂	c) NaO ₂	d) NaO	
56)	Bell metal is an allov of:	, 2	,	
	a) $Cu + Zn$ b) $Cu + Ni$	c) $Cu + Sn$	d) $Cu + Pb$	
	, ,	/	/	

BEATS

57)	The product formed y	when ozone reacts with	mercurv is:		
	a) HgO	b) Hg_2O_2	c) Hg_2O	d) HgO ₂	
58)	The best method for	the separation of naph	thalene and benzoic ac	id from their mixture is:	
	a) chromatography	b) crystallization	c) distillation	d) sublimation	
59)	Phenol on distilling	with Zn dust gives:	-))	
)	a) benzene	b) toluene	c) zinc phenoxide	d) acetylene	
60)	The compound that does not undergo Hell Volard Zelinsky (HVZ) reaction is:				
)	a) acetic acid	8	b) trichloroacetic aci	d	
	c) isobutyric acid		d) propionic acid		
	, ,				
		SECTION $- B(2)$	<u>marks)</u> (2*40=80)		
61)	The range of the fun	action $f(x) = \frac{2x}{2x+4}$ is:			
	a) $R - \{0\}$	b) $\{0,\infty\}$	c) $R - \{2/3\}$	d) $\{-1, 1\}$	
) ()	x+1 x+	2 x + 4		
62)	The value of the dete	erminant $x + 3 x + 3$	5 $x + 8$ is:		
		x+7 x+	10 x + 14		
	a) -2	b) 2	c) 4	d) 0	
63)	If 21^{st} and 22^{nd} ter	m in the expansion of	$(1+x)^{44}$ are equal, the	en the value of x is:	
	a) 3/2	b) 6	c) 7/8	d) 1/2	
64)	$e^{(1+x)-\frac{1}{2}(1+x)^2+\frac{1}{3}(1+x)}$	$x)^{3} - \frac{1}{4}(1+x)^{4} + \cdots =$			
0.)	a) $\log(1 + x)$	b) $\log x$	c) x	d) $2 + x$	
65)	$\tan^{2}(\sec^{-1}2) + \cot^{2}$	$t^{2}(cosec^{-1} 3)$ is:	-)		
,	a) 13	b) 15	c) 11	d) 20	
66)	If the sum of the slo	pes of the pair of lines	represented by $4x^2$ +	$2hxy - 7y^2 = 0$ is equal to	
00)	the product of the slo	opes, then the value of	h is:		
	a) -6	b) -2	c) -4	d) 4	
67)	The number of com	mon tangents to the cire	$x^{2} + y^{2} = 16$ and	$x^2 + y^2 - 2y = 0$ is:	
51)	a) 1	b) 2	c) 3	d) 0	
68)	If e_1 and e_2 are the e_3	eccentricities of the hyr	perbola $2x^2 - 2y^2 = 1$	and the ellipse $x^2 + 2y^2 =$	
00)		coordination of the hyp		$\frac{1}{2} = \frac{1}{2} = \frac{1}$	

2 respectively. Then: a) $e_1 + e_2 = 1$ b) $e_1 \cdot e_2 = 1$ c) $e_1^2 + e_2^2 = 1$ d) $e_1 = e_2/2$ If a line makes angles 45° and 60° with x axis and y axis, then the angle

69) If a line makes angles 45° and 60° with x-axis and y-axis, then the angle made by the line with z-axis is:
a) 60° or 120°
b) 45° or 135°
c) 30° or 150°
d) 90° or 180°

70) If
$$\vec{a} = (4, 3)$$
 and $\vec{b} = (-2, -3)$, then the unit vectors of $\vec{a} + 2\vec{b}$ is:
a) (0, 1) b) (0, -1) c) (1, 0) d) (-1, 0)

71) If mode of a data exceeds its mean by 12, then mode exceeds the median by: a) 4 b) 8 c) 6 d) 10 72) $\lim_{x\to 0} \frac{a^x - b^x}{x} \text{ is equal to:}$ a) $\log ab$ b) $\log \frac{a}{b}$ c) $\frac{\log a}{\log b}$ d) $\frac{\log b}{\log a}$

73) If
$$y = x^x$$
, then $\frac{dy}{dx} =$
a) log x b) 2 + log x c) $x^x \log x$ d) $x^x(1 + \log x)$

74)	The value of $\int \frac{x \sin^{-1}}{\sqrt{1-x}}$	$\frac{dx}{2}dx$ is:		
	a) $\sqrt{1-x^2} \sin^{-1} x +$	- <i>C</i>	b) $x \sin^{-1} x + c$	
	c) $x - \sqrt{1 - x^2} \sin^{-1}$	$x^{1} + c$	d) $(\sin^{-1} x)^2 + c$	
75)	The area of the regio	on between the curve y	$= x^3$ and the line $y =$	<i>x</i> lying in the first quadrant
	is:			
- 0	a) 1/4	b) 1/2	c) 1	d) 2
76)	A ball is thrown vert	ically upwards with a v	relocity of 30 m/s. If th	e acceleration due to gravity
	is 10 m/s^2 , the distan	ce travelled by it in the	e last second of motion	1S:
77)	A small object of un	iform density rolls un a	c) 25 III	a) 50 m elocity 'y' It reaches unto a
'')		$3v^2$ \cdot		· .
	maximum height of	$\frac{1}{4g}$ with respect to the i	nitial position. The ob	ject is:
	a) hollow sphere	b) disc	c) ring	d) solid sphere
78)	A body weighs 200	N on the surface of the	e earth. How mich wil	l it weigh half way down to
	the centre of earth?	L) 200 N	a) 250 N	d) 100 N
79)	a) 150 N A wooden cube float	0) 200 IN	C 250 N when a mass of 300 σ	a) 100 N is placed on it. If the mass is
17)	removed, the cube fl	oats with 3 cm above the	he water surface. The l	ength of the side of cube is:
	a) 10 cm	b) 15 cm	c) 20 cm	d) 30 cm
80)	20 gms of ice and 20	gms of hot water are r	nixed. When the ice m	elted, the temperature of the
	mixture was found	to be 0°C. The tem	perature of hot wate	r taken should be $(L_{ice} =$
	80 cal/gm):			
01)	a) 40°C	b) 72°C	c) 80°C	d) 96°C
81)	A carnot's engine op	vertes with source at 1.	27° C and sink at 27° C.	If the source supplies 40 kJ
	a) 30 kI	b) 10 k I	c) 4 k I	d) 1 kI
82)	An open resonating t	ube has fundamental fr	equency of n. When ha	lf of its length is dipped into
-)	water, then its funda	mental frequency will l	be:	0 11
	a) 3n/2	b) n/2	c) 2n	d) n
83)	Two small charged s	pheres A and B have c	harges 10 μ C and 40 μ	C respectively and are held
	at a separation of 90	cm from each other. A	t what distance from A	, electric intensity would be
	zero?	b) 18 cm	c) 36 cm	d) 30 cm
84)	A 4 m long wire of re	of to only a connect	ted in series with a batt	erv of emf 2 V and a resistor
01)	of 7 Ω . The internal	resistance of the batter	v is 1 Ω . The potential	gradient along the wire is:
	a) 0.25 Vm^{-1}	b) 0.50 Vm ⁻¹	c) 0.75 Vm^{-1}	d) 1.00 Vm ⁻¹
85)	In series RCL circuit	, the reactance of induc	ctor as well as capacito	r is 10 Ω . If the resistance in
	the circuit be 10Ω ar	nd 100 V power supply	is connected across it,	then the current in the circuit
	is:			
9()	a) 5 A $(1 - 1)$	b) 10 A	c) 15 A	d) 25 A
86)	A glass slab ($\mu = 1$.)	5) of thickness 3.0 cm	is placed on an ink spe	ot. A person looks at it from
	a distance 5.0 cm	b) 4.5 cm	c) 4.0 cm	d) 3.5 cm
87)	Two beams of light of	of intensities 4I and I int	erfere. The intensity of	the screen, where the phase
	difference is $\pi/2$, wi	ill be:	······	F
	a) 5I	b) 6I	c) 8I	d) 9I
88)	The threshold wavelength of a metal surface is 600 nm. The wavelength of the incident light is			ength of the incident light is
	450 nm. The maxim	um kinetic energy of th	e incident photon will	be:
	a) 0.3 eV	b) 0.6 eV	c) 0.9 eV	d) 1.2 eV

89) Volume of a gas at NTP is 1.12×10^{-7} cc. The number of mole			ales in it is:		
	a) 3.1×10^{20}	b) 3.01 × 10 ¹²	c) 30.1×10^{23}	d) 3.01×10^{24}	
90)	The weight of oxalic acid that will be required to prepare a 1000 mL (N/20) solution is:				
	a) 126/100 g	b) 63/40 g	c) 63/20 g	d) 126/20 g	
91)	The rate of a first or	The rate of a first order reaction is $1.5 \times 10^{-2} \text{ molL}^{-1} \text{min}^{-1}$ at 0.5 M concentration of the			
	reactant. The half life of the reaction is:				
	a) 7.53 min	b) 0.383 min	c) 23.1 min	d) 8.73 min	
92)	If $E^{0}_{Fe^{2+}/Fe} = -0.44$	If $E^{0}_{Fe^{2+}/Fe} = -0.441 V$ and $E^{0}_{Fe^{3+}/Fe^{2+}} = +0.771 V$, the standard emf of the reaction $Fe + 0.771 V$			
	$2Fe^{3+} \rightarrow 3Fe^{2+}$ will be:				
	a) 1.653 V	b) 1.212 V	c) 0.111 V	d) 0.330 V	
93)	Laughing gas is prepared by heating:				
	a) NH ₄ Cl		b) (NH ₄) ₂ SO ₄		
	c) NH ₄ Cl + NaNO ₃		d) NH ₄ NO ₂		
94) When Cl ₂ is passed through hot and conc. caustic soda, the			austic soda, the mixtur	e of the following substance	
	is produced:				
	a) NaCl and sodium chlorate		b) Sodium hypochlorite and bleaching powder		
	c) NaCl and sodium hypochlorite d) NaCl and bleaching			ig powder	
95)	The IUPAC name of the compound $CH_3CH(OH)CH = C(CH_3)CHO$ is:				
	a) 4-hydroxy-1-methyl pentanal		b) 2-hydroxy-4-methyl pent-3-en-5-ol		
	c) 4-hydroxy-2-meth	yl pent-2-enal	d) 2-hydroxy-4-meth	yl pent-2-enol	
96)	Identify the product 'C' in the following reaction: $F_{0}(\mu c) = \mu c h^{2} c^{2} $				
	$C_6H_5NO_2 \xrightarrow{Fe/HCl} A \xrightarrow{NaNO_2 + HCl, 2/3 K} B \xrightarrow{H_2O, 283 K} C$				
	a) $C_6H_5CH_2OH$		b) <i>C₆H₅OH</i>		
	c) C_6H_5CHO		d) $C_6H_5NH_2$		

Read the following passage and answer the questions given below (97-100).

It is strange that, according to his position in life, an extravagant man is admired or despised. A successful businessman does nothing to increase his popularity by being careful with his money. He is expected to display his success, to have a smart car, an expensive life, and to be lavish with his hospitality. If he is not so, he is considered mean and his reputation in business may even suffer in consequence. The paradox remains that if had not been careful with his money in the first place, he would never have achieved his present wealth. Among the low-income group, a different set of values exists. The young clerk who makes his wife a present of a new dress when he hadn't paid his house rent, is condemned as extravagant. Carefulness with money to the point of meanness is applauded as a virtue. Nothing in his life is considered more worthy into joyless little piles-so much for rent, for food, for the children's shoes; she is able to face the milkman with equanimity and never knows the guilt of buying something she can't really afford. As for myself, I fall into neither of these categories, if I have money to spare, I can be extravagant, but when, as is usually the case, I am hard up, then I am the meanest man imaginable.

- 97) In the opinion of the writer, a successful businessman:
 - a) is more popular if he appears to be doing nothing
 - b) should not bother about his popularity
 - c) must be extravagant before achieving success
 - d) is expected to have expensive tastes
- 98) The phrase 'lavish with his hospitality' signifies:
 - a) miserliness in dealing with his friends
 - b) considerateness in spending on guests and strangers
 - c) extravagance in entertaining guests
 - d) indifference in treating his friends and relatives

- 99) It seems that low paid people should:
 - a) not pay their bills promptly
 - b) not keep their creditors waiting
 - c) borrow money to meet their essential needs
 - d) feel guilty if they overspend
- 100) How does the housewife, described by the writer, feel when she saves money?
 - a) is content to be so thrifty.
- b) wishes life were less burdensome.
- c) is still troubled by a sense of guilt.
- d) wishes she could sometimes be extravagant.

******* Thank You!!! *******