BEATS ENGINEERING

INSTITUTE OF ENGINEERING

MODEL ENTRANCE EXAM

(Beats Test Series - Day 3)

Instructions:

There are 100 multiple-choice questions, each having four choices of which only one choice is correct.

Date : 2081/05/04 (August 20) **Duration** : 2 hours **Time :** 8 A.M. – 10 A.M.

<u>SECTION – A</u> (1 marks) (1*60 = 60)

1)	None of the information	ion conveyed.			
,	a) was	b) are	c) were	d) have been	
2)	I urged him t	he application form.			
	a) sign	b) to sign	c) signing	d) signed	
3)	After mother	dinner, she went out.			
	a) cooked	b) cooks	c) was cooking	d) had cooked	
4)	I would rather that yo	ou the work tod	lay.		
	a) not do	b) didn't do	c) hadn't done	d) haven't done	
5)	It is 3 O' clock	your watch.			
	a) in	b) at	c) on	d) by	
6)	Which of the following best explains the idiom "Burn the midnight oil"?				
	a) to work late into th	e night	b) to waste time		
	c) to be extremely luc	cky	d) to have a short tem	iper	
7)	The correct direct spe	ech form of the follow	ing sentence is:		
	"He told them that the	ey should study harder	if they wanted to succ	eed."	
	a) He said to them, "Y	You should study harde	er if you want to succee	ed."	
	b) He said, "They sho	ould study harder if the	y want to succeed."		
	c) He said, "You show	uld study harder if they	want to succeed."		
	d) He said to them, "	You should study hard	if you wanted to succe	ed."	
8)	The correct affirmativ	ve form of the followin	g sentence is:		
	"No sooner had we reached the station than the train left." a) As soon as we reached the station, the train left. b) The train left as we reached the station.				
	c) When we reached	the station, the train had already left.			
	d) We reached the sta	tion before the train le	ft.		
9)	In the word "teacher,"	" which phoneme repre	esents the "ch" sound?		
	a) /ʃ/	b) /tʃ/	c) /dʒ/	d) /s/	
10)	In which of the follow	ving words is the stress	s on the third syllable?		
	a) inability	b) photographer	c) economy	d) education	
11)	Impetuous (Synonym	l):			
	a) cautious	b) rash	c) thoughtful	d) deliberate	
12)	Aberration (Antonym	ı):			
	a) deviation	b) normality	c) variation	d) anomaly	
13)	Let $A = \{x:x is a prime$	the factor of 240}, $B=$	x:x is the sum of any	two prime factors of 240}.	
	Then:				
	a) $5 \in A \cap B$	b) $7 \in A \cap B$	c) $8 \in A \cap B$	d) $8 \in A \cup B$	
14)	Which of the following	ng statements is false?			
	a) If $ A = 0$, then $ a $	dj A = 0.			
	b) Adjoint of a diagon	nal matrix of order 3 \times	3 is a diagonal matrix		
c) Product of two upper triangular matrices is a upper triangular matrix					
	d) $adj(AB) = adj(A) adj(B)$				
15)	The value of $2e^{i\pi/3}$ i	s:			
	a) 1 + <i>i</i>	b) $1 + \sqrt{3}i$	c) $\sqrt{3} - i$	d) $2 + 2\sqrt{2}i$	
16)	The sum of the series	of the multiples of 5 fi	rom 5 to 100 both inclu	uusive is:	
	a) 2010	b) 1250	c) 1050	d) 2520	
17)	Three persons enter a	railway carriage, when	re there are 5 vacant se	eats. In how many ways can	
	they seat themselves?				
	a) 15	b) 12	c) 50	d) 60	

18)	In the expansion of $(1 +$	$(-x)^{10}$, the value of C_{10}	$C_1 + C_3 + C_5 + C_7 + C_6$, is:
	a) 2^{10} b)) 2 ¹¹	c) 2 ⁹	d) 2 ¹⁸
19)	If $7\sin^2 x + 3\cos^2 x = 4$	4, the general solution	n of equation is: π	
	a) $n\pi \pm \frac{\pi}{4}$		b) $n\pi \pm \frac{\pi}{3}$	
	c) $n\pi \pm \frac{\pi}{6}$		d) $n\pi \pm \frac{\pi}{2}$	
20)	$\operatorname{cosec}^{-1}\left\{\operatorname{cosec}\frac{5\pi}{4}\right\} =$			
	a) $\frac{\pi}{2}$ b)	$\frac{\pi}{4}$	c) $-\frac{\pi}{4}$	d) $-\frac{\pi}{2}$
21)	In $\triangle ABC$, $\frac{\cos B}{\cos C + c}$	$\frac{\cos A}{\cos A} =$	4	2
	b + a	1 1	$a)^{1}$	d = a
22)	$a) \frac{1}{a}$	$\frac{1}{b}$	$\frac{c}{c}$	$u = \frac{1}{b}$
22)	The orthocentre of a tria $a_{1}(1,2)$ b	(2, 3) and the	(0, 2)). Then the centroid is: d) $(1 - 4)$
23)	a) $(1, 2)$ $(1, 2)$ $(1, 2)$	(3, 5) um of the parabola r^2	(2, 3)	(1, -4)
23)	a) 4 b)	111 of the parabola x	= 12y is.	d) 16
24)	The eccentricity of the h	vperbola whose asvn	nptotes are $3x + 4y =$	= 2 and 4x - 3y = 5 is
,	a) 1 b)) 2	c) $\sqrt{2}$	d) $\sqrt{3}$
25)	Distance between two pa	arallel planes $2x + y$	x + 2z = 8 and $4x + 2$	2v + 4z + 5 = 0 is:
20)	a) 7/2 b)) $5/2$	c) 3/2	d) 9/2
26)	The projection of $(\hat{i} + \hat{j})$	$(\hat{i} + \hat{k})$ upon $(\hat{i} - \hat{i} + \hat{k})$	\hat{k}) is:	,
,	a)1 $b)$	$1/\sqrt{3}$	c) $\sqrt{3}/2$	d) 2
27)	Four coins are tossed sin	nultaneously. What is	s the probability of ge	tting 2H and 2T?
,	a) 1/8 b)) 1/4	c) 3/8	d) 1/16
28)	$\lim \left(1+\frac{5}{x}\right)^x =$			
	a) e b)) ∞	c) <i>e</i> ⁵	d) 1/ <i>e</i>
29)	If $y = \tan^{-1} x$ and $z = 0$	$\cot^{-1} x$, then $\frac{dy}{dz} =$		
	a) $\sqrt{1 + x^2}$ b)) 1	c) $\frac{1}{1+r^2}$	d) -1
30)	The function $y = x^3 + 3$	$3x^2 - 9x + 12$ has p	oint of inflection at:	
,	a) 2 b)) 3	c) 1/2	d) -1
31)	$\int_0^{\pi} \cos^3 x dx =$			
	a) -1 b)) 0	c) 1	d) π
32)	The integrating factor fo	or the differential equ	ation $x \frac{dy}{dx} + 2y = x^2$	$\ln x$ is:
,	a) x^2 b)) 2x	c) e^{2x}	d) $2 \ln x$
33)	Which of the following i	is the dimensions of t	the coefficient of fricti	ion?
,	a) $[M^2 L^2 T]$		b) $[M^0 L^0 T^0]$	
	c) $[ML^2T^{-2}]$		d) $[M^2 L^2 T^2]$	
34)	The greatest height to w	which a man can throw	w a stone is h. The gr	eatest distance to which he
	can throw it will be:			
25)	a) $h/2$ b)) h	c) 2h	d) 3h
35)	A particle moves with constant speed v along a circular path of radius r and completes the circle			
	In time 1. The acceleration $2\pi v$	$2\pi r$	$2\pi r^2$	$2\pi v^2$
	a) $\frac{-\pi t}{T}$ b)	$\frac{-T}{T}$	c) $\frac{-\pi T}{T}$	d) $\frac{T}{T}$
36)	The total energy of a par	rticle, executing simp	ble harmonic motion is	:
	a) $\propto x$		b) $\propto x^2$	
	c) independent of x		d) $\propto x^{1/2}$	

37)	Two spherical black bodies of radii r_1 and r_2 and with surface temperatures T_1 and respectively, radiate the same power. Then, r_1/r_2 must be equal to:				
	a) $\left(\frac{T_1}{T_2}\right)^2$	b) $\left(\frac{T_2}{T_1}\right)^2$	c) $\left(\frac{T_1}{T_2}\right)^4$	d) $\left(\frac{T_2}{T_1}\right)^4$	
38)	The figure below sho Which of the following	The figure below shows graph of pressure and volume of a gas at two temperatures T_1 and T_2 . Which of the following is correct?			
	T_1				
	a) $T_1 > T_2$ c) $T_1 < T_2$		b) $T_1 = T_2$ d) Nothing can be sai	d about temperatures	
39)	Frequency range of th	he audible sounds is:) 8	1	
,	a) 0 Hz-30 Hz		b) 20 Hz-20 kHz		
	c) 20 kHz-20,000 kH	Z	d) 20 kHz-20 MHz		
40)	When a body is earth	connected, electrons	from the earth flow int	to the body. This means the	
	body is:			-	
	a) uncharged		b) charged positively		
	c) charged negatively	7	d) an insulator		
41)	When a charged parti	icle enters in a uniform	magnetic field, its kin	etic energy:	
	a) remains constant	b) increases	c) decreases	d) becomes zero	
42)	A series L-C-R circuit is operated at resonance. Then:				
	a) voltage across R is minimum		b) impedance is mnimum		
42)	c) impedance is maximum		a) current amplitude is minimum		
43)	An object is placed 4	0 cm from a concave n	hirror of focal length 2	0 cm. The image formed is:	
	a) real, inverted and same in size		d) virtual erect and smaller in size		
44)	When light is refracte	arger in size	ving does not change?		
)	a) wavelength	b) frequency	c) velocity	d) amplitude	
45)	The impurity atoms	which are mixed with	pure silicon to make	a p-type semiconductor are	
10)	those of:				
	a) phosphorous	b) boron	c) antimony	d) copper	
46)	The expansion of gal	axies is supported by:			
	a) neutron star	b) white dwarf star	c) red shift	d) black holes	
47)	Among the following	g pair of compounds, th	the one that illustrate the	e laws of proportion is:	
19)	a) NH_3 and NCI_3 b) H_2S and SO_2 c) CUO and CU_2O d) CS_2 and $FeSO_4$ The orbital encylor momentum of a p electron is:			d) LS_2 and $FeSO_4$	
48)					
	a) $\sqrt{\frac{3}{2}\frac{h}{\pi}}$	b) $\sqrt{6} \frac{h}{2\pi}$	c) $\frac{h}{\sqrt{2}\pi}$	d) $\sqrt{3} \frac{h}{2\pi}$	
49)	Under identical exper	imental conditions, wh	hich of the following na	ir of gases will be most easy	
,	to separate by diffusi	on?			
	a) H_2, D_2		b) <i>O</i> ₂ , <i>N</i> ₂		
	c) $^{235}U_6$, $^{238}U_6$		d) <i>H</i> ₂ , <i>O</i> ₂		
50)	In which of the following sets, all the properties belong to same category (all extensive or all				
	intensive)?				
	a) mass, volume, pressure		b) temperature, pressure, volume		
c) heat capacity, density, entropy d) enth			d) enthalpy, internal) enthalpy, internal energy, volume	
51)	For the reaction, 2NF	$H_3(g) \rightleftharpoons N_2(g) + 3H_2$	(g), the unit of k_p will	$\frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}$	
	a) atm	b) (<i>atm</i>) ^s	c) $(atm)^{-2}$	d) (atm) ²	

52)	The conjugate acid of NH_2^- is:				
ŕ	a) NH_4^+ b) NH_3	c) $N_2 H_4$	d) NH ₂ OH		
53)	The alkali metal halide soluble in pyridine i	S:			
	a) NaCl b) LiCl	c) KCl	d) NaBr		
54)	Beryllium and Aluminium have similar prop	perties because:			
	a) they belong to the same group.				
	b) they have same charge				
	c) they have similar outer elecreonic config	uration.			
>	d) they have same polarizing power.				
55)	Which of the following is a good conductor	of heat and electricity			
50	a) anthracite b) diamond	c) charcoal	d) graphite		
56)	Which of the following is a secondary pollu	itant?	1) -11		
57)	a) NO b) CO $C_{11} = 1.5$	c) SO_2	a) phenol		
57)	Gold and Silver are extracted from their res	pective ores by:	d) by dra matally new		
58)	a) leaching b) smelting	c) roasting	a) nyaro metanurgy		
56)	a) steam distillation	b) simple distillation			
	c) vacuum distillation	d) fractional distillation	on		
59)	The compound which will not show tautom	erism is:			
27)	a) methanal b) ethanal	c) propanal	d) propanone		
60)	Which among the following is most stable of	carbocation?	a) h. channe		
)) C U = C	1) C U		
	a) $CH_3 - CH_2$ b) $CH_2 = CH$	c) CH = C	a) L_6H_5		
	<u>SECTION – B (2 marks)</u> (2*40=80)				
61)	The domain of the function $f(x) = \sin^{-1} \left(e^{-x} \right)^{-1}$	$log_3\left(\frac{x}{3}\right)$ is:			
	a) [-1, 9] b) [-9, 1]	c) [-9, -1]	d) [1, 9]		
62)	If $D_1 = \begin{vmatrix} x & b & b \\ a & x & b \end{vmatrix}$ and $D_2 = \begin{vmatrix} x & b \end{vmatrix}$, then:				
,					
	a) $D_1 = 3D_2^2$	b) $\frac{d}{dx}(D_1) = 3D_2$			
	c) $\frac{d}{dx}(D_1) = 3D_2^2$	d) $D_1 = 3D_2$			
63)	If the roots of the equation $px^2 + qx + r = 0$ are in the ratio 3:4, then:				
,	a) $12p^2 = 49qr$	b) $12q^2 = 49pr$			
	c) $4p^2 = 9rq$	d) $7pq = 12r^2$			
64)	The value of $\frac{1}{2} \cdot \frac{1}{2} - \frac{1}{4} \cdot \frac{1}{2^2} + \frac{1}{4} \cdot \frac{1}{2^3} + \dots + \infty$ is:				
	The value of $\frac{1}{2}$. $\frac{1}{3} - \frac{1}{4}$. $\frac{1}{3^2} + \frac{1}{6}$. $\frac{1}{3^3} + \dots + \infty$ is	:			
	The value of $\frac{1}{2} \cdot \frac{1}{3} - \frac{1}{4} \cdot \frac{1}{3^2} + \frac{1}{6} \cdot \frac{1}{3^3} + \dots + \infty$ is a) $\frac{1}{2} \log(4/3)$	b) log(3/4)			
	The value of $\frac{1}{2} \cdot \frac{1}{3} - \frac{1}{4} \cdot \frac{1}{3^2} + \frac{1}{6} \cdot \frac{1}{3^3} + \dots + \infty$ is a) $\frac{1}{2} \log(4/3)$ c) $\log 4 - 2 \log 3$	b) log(3/4)			
65)	The value of $\frac{1}{2} \cdot \frac{1}{3} - \frac{1}{4} \cdot \frac{1}{3^2} + \frac{1}{6} \cdot \frac{1}{3^3} + \dots + \infty$ is a) $\frac{1}{2} \log(4/3)$ c) $\log 4 - 2 \log 3$ The solution of $\tan 2x$, $\tan x = 1$ is:	b) $log(3/4)$ d) $log_e 3$			
65)	The value of $\frac{1}{2} \cdot \frac{1}{3} - \frac{1}{4} \cdot \frac{1}{3^2} + \frac{1}{6} \cdot \frac{1}{3^3} + \dots + \infty$ is a) $\frac{1}{2} \log(4/3)$ c) $\log 4 - 2 \log 3$ The solution of $\tan 2x \cdot \tan x = 1$ is: a) $\frac{\pi}{2} + \frac{1}{2} \log(4/3)$: b) $\log(3/4)$ d) $\log_e 3$ c) $(4n \pm 1)^{\pi}$	d) $(2n \pm 1)^{\pi}$		
65)	The value of $\frac{1}{2} \cdot \frac{1}{3} - \frac{1}{4} \cdot \frac{1}{3^2} + \frac{1}{6} \cdot \frac{1}{3^3} + \dots + \infty$ is a) $\frac{1}{2} \log(4/3)$ c) $\log 4 - 2 \log 3$ The solution of $\tan 2x \cdot \tan x = 1$ is: a) $\frac{\pi}{3}$ b) $(6n \pm 1) \frac{\pi}{6}$: b) $\log(3/4)$ d) $\log_e 3$ c) $(4n \pm 1)\frac{\pi}{6}$	d) $(2n \pm 1)\frac{\pi}{6}$		
65) 66)	The value of $\frac{1}{2} \cdot \frac{1}{3} - \frac{1}{4} \cdot \frac{1}{3^2} + \frac{1}{6} \cdot \frac{1}{3^3} + \dots + \infty$ is a) $\frac{1}{2} \log(4/3)$ c) $\log 4 - 2 \log 3$ The solution of $\tan 2x \cdot \tan x = 1$ is: a) $\frac{\pi}{3}$ b) $(6n \pm 1) \frac{\pi}{6}$ The equations of bisectors of the angles bet	: b) log(3/4) d) $log_e 3$ c) $(4n \pm 1)\frac{\pi}{6}$ ween the pair of lines 2	d) $(2n \pm 1)\frac{\pi}{6}$ $x^{2} + 2xy \csc \theta + y^{2} = 0$		
65) 66)	The value of $\frac{1}{2} \cdot \frac{1}{3} - \frac{1}{4} \cdot \frac{1}{3^2} + \frac{1}{6} \cdot \frac{1}{3^3} + \dots + \infty$ is a) $\frac{1}{2} \log(4/3)$ c) $\log 4 - 2 \log 3$ The solution of $\tan 2x \cdot \tan x = 1$ is: a) $\frac{\pi}{3}$ b) $(6n \pm 1) \frac{\pi}{6}$ The equations of bisectors of the angles bet is:	$(1) = \frac{1}{2}$ $(1) = \frac{1}{2} = \frac{1}{2}$	d) $(2n \pm 1)\frac{\pi}{6}$ $x^2 + 2xy \operatorname{cosec} \theta + y^2 = 0$		
65) 66)	The value of $\frac{1}{2} \cdot \frac{1}{3} - \frac{1}{4} \cdot \frac{1}{3^2} + \frac{1}{6} \cdot \frac{1}{3^3} + \dots + \infty$ is a) $\frac{1}{2} \log(4/3)$ c) $\log 4 - 2 \log 3$ The solution of $\tan 2x \cdot \tan x = 1$ is: a) $\frac{\pi}{3}$ b) $(6n \pm 1) \frac{\pi}{6}$ The equations of bisectors of the angles bet is: a) $(x - y)^2 = 0$ c) $(x - y)(x + y) = 0$	$b) \log(3/4)$ $d) \log_e 3$ $c) (4n \pm 1)\frac{\pi}{6}$ ween the pair of lines 2 $b) (x - y)2x = 0$ $d) (x - y)2x = 0$	d) $(2n \pm 1)\frac{\pi}{6}$ $x^{2} + 2xy \operatorname{cosec} \theta + y^{2} = 0$		
65) 66)	The value of $\frac{1}{2} \cdot \frac{1}{3} - \frac{1}{4} \cdot \frac{1}{3^2} + \frac{1}{6} \cdot \frac{1}{3^3} + \dots + \infty$ is a) $\frac{1}{2} \log(4/3)$ c) $\log 4 - 2 \log 3$ The solution of $\tan 2x \cdot \tan x = 1$ is: a) $\frac{\pi}{3}$ b) $(6n \pm 1) \frac{\pi}{6}$ The equations of bisectors of the angles bet is: a) $(x - y)^2 = 0$ c) $(x - y)(x + y) = 0$ The equation of the aircle which teacher the	: b) $\log(3/4)$ d) $\log_e 3$ c) $(4n \pm 1)\frac{\pi}{6}$ ween the pair of lines : b) $(x - y)2x = 0$ d) $(x - y)xy = 0$	d) $(2n \pm 1)\frac{\pi}{6}$ $x^{2} + 2xy \csc \theta + y^{2} = 0$		
65) 66) 67)	The value of $\frac{1}{2} \cdot \frac{1}{3} - \frac{1}{4} \cdot \frac{1}{3^2} + \frac{1}{6} \cdot \frac{1}{3^3} + \dots + \infty$ is a) $\frac{1}{2} \log(4/3)$ c) $\log 4 - 2 \log 3$ The solution of $\tan 2x \cdot \tan x = 1$ is: a) $\frac{\pi}{3}$ b) $(6n \pm 1)\frac{\pi}{6}$ The equations of bisectors of the angles bet is: a) $(x - y)^2 = 0$ c) $(x - y)(x + y) = 0$ The equation of the circle which touches the c) $x^2 + y^2 + 6x + 6y = 0$	$b) \log(3/4)$ $d) \log_{e} 3$ $c) (4n \pm 1)\frac{\pi}{6}$ we en the pair of lines x $b) (x - y)2x = 0$ $d) (x - y)xy = 0$ e coordinates axes at (3) $b) x^{2} + y^{2} + x^{2} + x^{2} = 0$	d) $(2n \pm 1)\frac{\pi}{6}$ $x^{2} + 2xy \operatorname{cosec} \theta + y^{2} = 0$ $y_{1}, 0) \operatorname{and} (0, 3) \operatorname{is:} y_{2} = 0$		

	c) $x^2 + y^2 - 2x + 6$	5y - 9 = 0	c) $x^2 + y^2 - 6x - 6$	y + 9 = 0
68)	An equation of the ellipse whose length of the major axis is 10 and foci are $(\pm 2, 0)$ is:			
	a) $\frac{x^2}{25} + \frac{y^2}{21} = 1$	b) $\frac{x^2}{25} + \frac{y^2}{4} = 1$	c) $\frac{x^2}{25} + \frac{y^2}{16} = 1$	d) $\frac{x^2}{20} + \frac{y^2}{25} = 1$
69)	The direction cosine	s of the line joining the	e points A(-1, 2, 5) and	B(-2, 4, 3) are:
	a) $-\frac{1}{3}, \frac{2}{3}, -\frac{2}{3}$	b) $\frac{1}{4}$, $-\frac{3}{4}$, $\frac{7}{4}$	c) $-\frac{1}{3}$, $-\frac{2}{3}$, $\frac{2}{3}$	d) $\frac{1}{2}$, $\frac{3}{2}$, $-\frac{1}{2}$
70)	If $\vec{a}, \vec{b}, \vec{c}$ are unit vec	tors such that $\vec{a} - \vec{b} + \vec{a}$	$\vec{c} = 0$, then $\vec{c} \cdot \vec{a} = ?$	
,	a) 3/2	b) -1/2	c) 1/3	d) -1/3
71)	The mean deviation	about median from the	data 340, 150, 210, 24	0, 300, 310, 320 is:
	a) 50 $r + r^2 + r^3 + \dots + r^n - n$	b) 52.8	c) 55	d) 45
72)	$\lim_{x \to 1} \frac{x + x + x + \dots + x - n}{x - 1}$	=		
	a) $n^2 + 1$	b) $\frac{n(n+1)}{2}$	c) (2 <i>n</i> − 1)	d) (<i>n</i> + 1)
70)			= dy	
73)	If $y = \sqrt{\tan x} + \sqrt{\tan x}$	$an x + \sqrt{tan x + \dots + o}$	o, then $\frac{1}{\frac{dx}{dx}} =$	
	a) $\frac{1}{(2y-1)}$	b) $\frac{\sec x \cdot \tan x}{(2y+1)}$	c) $\frac{\sec^2 x}{(2y-1)}$	d) $\frac{\sec x \cdot \tan x}{(2y-1)}$
74)	$\int \frac{dx}{dx} =$	(29 + 1)	(2y 1)	(29 1)
, .)	$\int (x+3)\sqrt{x+2}$		$1 > 2 + -1 \sqrt{-1 + 2}$	
	a) $\tan^{-1}\sqrt{x+2+c}$		b) $2 \tan^{-1} \sqrt{x} + 2 + c$	
`	c) $-2 \tan^{-1}\sqrt{x} + 2$	+ <i>c</i>	d) $\sin^{-1}\left(\frac{1}{2}\right) + c$	
75)	The area bounded by	the curves $y = 3x$ and $x = 3x$	d $y = x^2$ is (in square)	unit):
76)	a) 10 Valacity of a hady w	D) J navina alana a straight	C) 4.5	$\frac{1}{3}$
70)	Velocity of a body moving along a straight line with uniform acceleration a reduces by $\frac{2}{4}$ of			
	is:			
	a) $\frac{4}{2}t_0$	b) $\frac{3}{2}t_0$	c) $\frac{5}{2}$ t ₀	d) $\frac{8}{2}t_0$
77)	A man of mass 50 k	g stands on a frame of	mass 30 kg. He pulls of	on a light rope which passes
	over a pulley. The	other end of the rope	is attached to the fran	ne. For the system to be in
	equilibrium what for	rce man must exert on t	he rope?	1) 50
78)	a) 40 g A thin rod of length	b) 80 g L is bent to form a se	c) 30 g micircle. The mass of	d) 50 g rod is M. What will be the
70)	gravitational potentia	al at the centre of the ci	ircle?	Tod is wi. what will be the
	a) $-\frac{GM}{M}$	b) $-\frac{GM}{GM}$	c) $-\frac{\pi GM}{\pi}$	d) $-\frac{\pi GM}{\pi}$
79)	Water flows in a s	$2\pi L$ treamlined manner the	rough a capillary tube	L_{L} e of radius a. the pressure
)	difference being p a	and the rate of flow Q	. If the radius is redu	ced to $a/2$ and the pressure
	increased to 2p, then	rate of flow becomes:		
0.0)	a) 4Q	b) Q	c) Q/4	d) Q/8
80)	A lead bullet of $10 g$	g travelling at 300 m/s	strikes against a block	of wood and comes to rest.
	a) 100° C	b) 125°C	c) 150°C	d) 200°C
Q (1)	Λ gas for which $\chi =$	1 5 is suddenly comm	record to the $f_{\pm}^{1\text{th}}$ the in	itial valuma. Than the ratio
01)	A gas for which $\gamma =$	tial pressure is:	$\frac{1}{4}$	initial volume. Then, the fatto
	a) 1:16	b) 1:8	c) 1:4	d) 8:1
82)	A source of sound of	f frequency 600 Hz is p	placed inside water. Th	e speed of sound in water is
	1500 m/s and in air is	s 300 m/s. The frequence	v of sound recorded by	an observer who is standing
		1	5	

83)	a) 200 Hz The capacitance of a plates, the potential of of glass?	b) 300 Hz a parallel plate capacito difference reduces to 1/	c) 120 Hz or is 16μF. When a glas 8th of the original valu	d) 600 Hz ss slab is placed between the e. What is dielectric constant	
	a) 4	b) 8	c) 16	d) 32	
84)	In the figure, current	t through the 3 Ω resist	or is 0.8 A, then potent	ial drop through 4 Ω resistor	
05	a) 9.6 V	b) 2.6 V	c) 4.8 V	d) 1.2 V	
85)	A magnet of magne field of strength B. 7	tic moment M is situa The work done is rotati	ted with its axis along ng it by an angle of 18	the direction of a magnetic 0° will be:	
	a) -MB	b) +MB	c) zero	d) +2MB	
86)	A prism, having refractive index $\sqrt{2}$ and refracting angle 30°, has one of the refracting surf polished. A beam of light incident on the other refracting surface will trace its path, if the a				
	of incidence is:				
	a) 0°	b) 30°	c) 45°	d) 60°	
87)	Two slits are separa the screen is placed i will be:	ted by a distance of 0. 2.5 m from the slits. Th	5 mm and illuminated ne distance of the third	with light of $\lambda = 6000$ Å. If bright image from the centre	
	a) 1.5 mm	b) 3 mm	c) 6 mm	d) 9 mm	
88)	The work function for tungsten and sodium are 4.5 eV and 2.3 eV respectively. If the thresho wavelength λ for sodium is 5600 Å, the value of λ for tungsten is:				
	a) 5893 Å	b) 10683 Å	c) 2862 Å	d) 528 Å	
89)	Electrolysis of conce	entrated solution of pot	assium acetate gives:		
	a) methane	b) ethane	c) ethene	d) ethyne	
90)	Conversion of alkyl	cyanide to primary am	ines is known as:		
	a) Stephan's reduction		b) Rosenmund's reduction		
	c) Mendius reduction	n	d) Cannizzaro's reaction		
91)	In which of the follo	wing molecules/ions, t	the central atom is sp ² l	nybridised?	
	a) NH_2 and H_2O		b) BF_3 and NO_2		
	c) $\overline{NO_2}$ and H_2O		d) \overline{NO}_2 and \overline{NH}_2		
92)	When one Faraday o	f electricity is passed th	rough CuSO ₄ solution,	the number of atoms formed	
	at cathode will be:				
	a) 6.02×10^{23}		b) 3.01 × 10 ²³		
	c) 2		d) 6.02×10^{-23}		
93)	For the first order rea	action, half life is 14 s.	Time required for the in	nitial concentration to reduce	
	to $\frac{1}{8}^{\text{th}}$ of its value is:				
	a) 28 s	b) 42 s	c) $(14)^3$ s	d) $(14)^2$ s	
94)	On the basis of com	position, the oxidation	number of iron in Fe ₃ O	D ₄ is/are:	
	a) +2 and +3	a) +2 and +3 b) +1 and +2 c) +2 only d) +3 only			
95) The acidic, basic or amphoteric nature of Mn_2			12O7, V2O5 and CrO are respectively:		
	a) acidic, acidic and	basic	b) basic, amphoteric	and acidic	
c) acidic, amphoteric and basic d) acidic, basic and basic				Dasic .	
96)	The final acid obtain a) H_2SO_4 (conc)	b) H ₂ SO ₄ (dil)	ture of H_2SO_4 by ccont c) $H_2S_2O_4$	tact process 1s: d) $H_2S_2O_7$	

99)

Read the following passage and answer the questions given below (97-100).

Recent advancements in medical science have revolutionized the way we diagnose and treat diseases. Innovations such as precision medicine, which tailors treatment to individual genetic profiles, have significantly improved patient outcomes. Additionally, breakthroughs in biotechnology and pharmaceuticals have led to the development of new therapies and vaccines. However, the high cost of these innovations and the need for rigorous clinical trials pose challenges for widespread implementation.

- 97) How has precision medicine impacted patient outcomes, according to the passage?
 - a) It has made treatments less effective b) It has improved treatment personalization
 - c) It has increased the cost of healthcare d) It has limited the availability of treatments
- 98) What are some of the advancements mentioned in the passage that have impacted medical science?
 - a) Traditional medicine and herbal remedies b) Biotechnology and pharmaceuticals
 - c) Surgical techniques and physical therapy d) Home remedies and dietary changes
 - What is one of the challenges associated with recent medical advancements?
 - a) Decreased interest in medical research
 - b) High cost and need for clinical trials
 - c) Increased availability of traditional treatments
 - d) Lack of new medical innovations
- 100) According to the passage, what role do biotechnology and pharmaceuticals play in medical science?
 - a) They are outdated methods of treatment
 - b) They contribute to the development of new therapies and vaccines
 - c) They are less effective than traditional methods
 - d) They are primarily used for diagnostic purposes

*** Thank You!!! ****