# BEATS ENGINEERING

## **INSTITUTE OF ENGINEERING**

## **MODEL ENTRANCE EXAM**

(Beats Test Series - Day 4)

Instructions:

There are 100 multiple-choice questions, each having four choices of which only one choice is correct.

Date : 2081/05/05 (August 21) **Duration** : 2 hours **Time :** 8 A.M. – 10 A.M.

#### <u>SECTION – A (1 marks)</u> (1\*60 = 60)

| 1)       | The faculty div                                                                                          | ided on the promotion ar     | rangements made last w      | eek.                           |
|----------|----------------------------------------------------------------------------------------------------------|------------------------------|-----------------------------|--------------------------------|
| ,        | a) is                                                                                                    | b) were                      | c) has been                 | d) was                         |
| 2)       | I must go befor                                                                                          | the shops are closed.        | ,                           | ,                              |
| ,<br>,   | a) shopping                                                                                              | b) to shop                   | c) to shopping              | d) shop                        |
| 3)       | The plane for F                                                                                          | okhara tomorrow.             |                             | , <b>,</b>                     |
| ,<br>,   | a) is leaving                                                                                            | b) left                      | c) was leaving              | d) leaves                      |
| 4)       | She would rather that y                                                                                  | ou then.                     |                             | <i>`</i>                       |
| <i>,</i> | a) work                                                                                                  | b) had worked                | c) worked                   | d) have worked                 |
| 5)       | They differ one                                                                                          | e another on many points     | •                           | <i>`</i>                       |
| /        | a) to                                                                                                    | b) at                        | c) for                      | d) from                        |
| 6)       | "I had my vaccination t                                                                                  | today." The word 'vaccin     | nation' has a stress prima  | rily on its syllable.          |
| /        | a) first                                                                                                 | b) second                    | c) third                    | d) fourth                      |
| 7)       | The correct phonetic sy                                                                                  | mbol of the underlined p     | part of the word "Either"   | is:                            |
| <i>,</i> | a) /eI/                                                                                                  | b) /eə/                      | c) /Iə/                     | d) /al/                        |
| 8)       | "To spin a yarn" means                                                                                   | 5:                           |                             | , <b>, ,</b>                   |
| /        | a) to try hard                                                                                           |                              | b) to be inconsistent       |                                |
|          | c) to make up a story                                                                                    |                              | d) to be in charge          |                                |
| 9)       | Confined (Antonym):                                                                                      |                              |                             |                                |
| /        | a) enclosed                                                                                              | b) liberate                  | c) cramped                  | d) incarcerated                |
| 10)      | Irrevocable (Synonym)                                                                                    | :                            |                             | ,                              |
| ,        | a) conclusive                                                                                            | b) changeable                | c) flexible                 | d) alterable                   |
| 11)      | The passive voice of, "                                                                                  | She handles all tasks effi   | ciently." is:               | ,                              |
| ,        | a) All tasks are handled                                                                                 | l efficiently by her.        | 2                           |                                |
|          | b) All tasks were handl                                                                                  | ed efficiently by her.       |                             |                                |
|          | c) All tasks have been l                                                                                 | nandled efficiently by her   | r.                          |                                |
|          | d) All tasks are being h                                                                                 | andled efficiently by her    |                             |                                |
| 12)      | The grammatical patter                                                                                   | n of the following senter    | nce, "The committee mad     | de me secretary of the school" |
| ,        | is:                                                                                                      |                              |                             |                                |
|          | a) $S + V + O + A$                                                                                       |                              | b) $S + V + O + C + A$      |                                |
|          | c) $A + S + V + O$                                                                                       |                              | d) $A + S + V + C$          |                                |
| 13)      | $\lim(1-x)\tan\frac{\pi x}{x} =$                                                                         |                              |                             |                                |
| ,        | $x \rightarrow 1$ 2                                                                                      | . 2                          | 、<br>、                      | . 1                            |
|          | a) $\frac{1}{2}$                                                                                         | b) $\frac{-}{\pi}$           | c) <i>π</i>                 | d) $\frac{-}{\pi}$             |
| 14)      | $\frac{d}{d}\left(\frac{\cos x}{\cos x}\right) =$                                                        |                              |                             |                                |
| )        | $dx \left( \sin x + 1 \right)$                                                                           | -1                           | 、 1                         | · -1                           |
|          | a) $\frac{1}{1-\sin x}$                                                                                  | b) $\frac{-}{\cos x+1}$      | c) $\frac{1}{1-\cos x}$     | d) $\frac{1}{\sin x + 1}$      |
| 15)      | If $xy = 4$ and $x < 0$ , the                                                                            | hen maximum value of $x$     | + 16 <i>y</i> is:           |                                |
|          | a) 8                                                                                                     | b) -8                        | c) 16                       | d) -16                         |
| 16)      | $\int \frac{dx}{dx} = $                                                                                  |                              |                             |                                |
| -)       | $\int x + \sqrt{x}$                                                                                      |                              | $( \Box )$                  |                                |
|          | a) $\log(\sqrt{x} + 1) + c$                                                                              |                              | b) $\log(\sqrt{x}) + c$     |                                |
|          | c) $2\log(\sqrt{x}+1)+c$                                                                                 |                              | d) $2\log(\sqrt{x}) + c$    |                                |
| 17)      | The value of k for which                                                                                 | ch the roots of the equation | $\sin x^2 - kx + k + 1 = 0$ | are in the ratio 2:3 is:       |
|          | a) $k = 6$                                                                                               | b) $k = -6$                  | c) $k = 5$                  | d) $k = -5$                    |
| 18)      | $\sum_{n=0}^{\infty} \frac{(\log_e x)^{2n}}{(2n)!} =$                                                    |                              |                             |                                |
| ,        | (2n)!                                                                                                    | 1, 1,                        | $x+x^{-1}$                  | $e^{x} + e^{-x}$               |
|          | a) $\frac{1}{2}$                                                                                         | b) $\frac{1}{x} + x$         | c) $\frac{1}{2}$            | d) $\frac{1}{2}$               |
| 19)      | If 5, <i>x</i> , <i>y</i> , <i>z</i> , 405 are in (                                                      | J.P., then $z =$             |                             |                                |
| • • •    | a) 15                                                                                                    | b) 45                        | c) 135                      | d) 85                          |
| 20)      | In 30 balls, a batsman hits the boundaries 6 times. What will be the probability that he did not hit the |                              |                             |                                |
|          | boundaries?                                                                                              |                              | N <b>A</b> / <b>F</b>       |                                |
|          | a) 1/5                                                                                                   | b) 4/5                       | c) 3/5                      | d) 2/5                         |

### BEATS

| 21)    | If matrix A is of order $p \times q$ and matrix B is o<br>a) $p = q$                                       | ix A is of order $p \times q$ and matrix B is of order $r \times s$ , then $A - B$ will exist if:<br>p = r, q = s |                                        |  |
|--------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------|--|
|        | c) $p = q, r = s$                                                                                          | c) $p = s, q = r$                                                                                                 |                                        |  |
| 22)    | A candidate has to pass in 5 different subjects if fail is:                                                | in an examination. The nu                                                                                         | mber of ways in which he may           |  |
|        | a) 30 b) 31                                                                                                | c) 32                                                                                                             | d) 33                                  |  |
| 23)    | Let f and g be the functions defined by $f(x) =$                                                           | $\frac{x}{x+1}$ , $g(x) = \frac{x}{1-x}$ , then                                                                   | fog(x) is:                             |  |
|        | a) $\frac{1}{x}$ b) $\frac{1}{x-1}$                                                                        | c) $x - 1$                                                                                                        | d) <i>x</i>                            |  |
| 24)    | ax + by + c = 0, bx + cy + a = 0 and $cx + 0$ , then:                                                      | ay + b = 0 are equations                                                                                          | s of three lines. If $a + b + c =$     |  |
|        | a) lines are concurrent                                                                                    | b) lines are parallel to                                                                                          | each other                             |  |
| • •    | c) all lines are coincident                                                                                | d) they form a triangle                                                                                           |                                        |  |
| 25)    | Equation $x^2 + ky^2 + 4xy = 0$ represents two                                                             | coincident lines if $k =$                                                                                         | 1) 1.6                                 |  |
| 20     | a) 0 b) 1<br>The line $\alpha = \max + \alpha$ interpret the norm hele $\alpha$                            | c) 4<br>2 - 4 and in the importance                                                                               |                                        |  |
| 26)    | The line $y = mx + c$ intersects the parabola y                                                            | r = 4ax in two imaginary                                                                                          | y points if:<br>mc                     |  |
|        | a) $\frac{a}{a} < 1$ b) $\frac{a}{a} > 1$                                                                  | c) $\frac{1}{a} = 1$                                                                                              | d) $\frac{1}{a} = 0$                   |  |
| 27)    | The vertices of the ellipse $16x^2 + 25y^2 = 40$                                                           | 0 is:                                                                                                             |                                        |  |
|        | a) $(\pm 5, 0)$ b) $(\pm 4, 0)$                                                                            | c) $(0, \pm 4)$                                                                                                   | d) (0, ±5)                             |  |
| 28)    | The equation of plane passing through the point                                                            | nt $(1, -1, 2)$ and making equation                                                                               | qual intercept on the axes is:         |  |
|        | a) $x - y + 2z = 0$                                                                                        | b) $x - y + 2z = 2$                                                                                               |                                        |  |
| 20)    | c) $x + y + z = 0$                                                                                         | d) $x + y + z = 2$                                                                                                |                                        |  |
| 29)    | The value of $4 \sin A \cos^2 A - 4 \cos A \sin^2 A \sin^2 A$ is                                           | equal to:                                                                                                         | d) airs 4.4                            |  |
| 20)    | a) $\cos 8A$ b) $\sin 2A$<br>The number of colutions of $\sin^2 \theta + 2\cos \theta =$                   | $c) \cos 4A$                                                                                                      | d) SIN 4A                              |  |
| 30)    | The number of solutions of $sin(\theta + 3\cos\theta) =$                                                   | r = 10 $r = 10$ $r = 10$ $r = 10$ $r = 10$                                                                        | d) 1                                   |  |
| 31)    | If $\csc^{-1} r = \sin^{-1} \frac{1}{2}$ then which of the following                                       | owing is not the value of                                                                                         | v?                                     |  |
| 51)    | $\frac{1}{x}$ , then when of the form                                                                      |                                                                                                                   |                                        |  |
|        | a) $x = -\frac{1}{2}$ b) $x = \frac{1}{2}$                                                                 | c) $x = -\frac{1}{2}$                                                                                             | d) $x = 1$                             |  |
| 32)    | If $\theta$ is the angle between vectors such that $\vec{a}$ . $\vec{b}$                                   | $\geq 0$ , then:                                                                                                  |                                        |  |
|        | a) $0 \le \theta \le \pi$                                                                                  | b) $\frac{\pi}{2} \le \theta \le \pi$                                                                             |                                        |  |
|        | c) $0 \le \theta \le \frac{\pi}{2}$                                                                        | d) $\hat{0} < \theta < \frac{\pi}{2}$                                                                             |                                        |  |
| 33)    | $16 \propto 16 = 2$                                                                                        | as in:                                                                                                            |                                        |  |
| 55)    | a) $16 \text{ g of } CO$ b) $28 \text{ g of } N_2$                                                         | c) 14 g of $N_2$                                                                                                  | d) 2 g of $H_2$                        |  |
| 34)    | Which of the following is not permissible array                                                            | ngement of electrons in a                                                                                         | n atom?                                |  |
| ,<br>, | a) $n = 5, l = 3, m = 0, s = +1/2$                                                                         | b) $n = 3, l = 2, m = -3, s = -1/2$                                                                               |                                        |  |
|        | c) $n = 3, l = 2, m = -2, s = -1/2$                                                                        | d) $n = 4, l = 0, m = 0$                                                                                          | s = -1/2                               |  |
| 35)    | Dipole induced dipole interaction are present i                                                            | n which pair?                                                                                                     |                                        |  |
|        | a) $H_2O$ and alcohol b) $Cl_2$ and $CCl_4$                                                                | c) HCl and He                                                                                                     | d) SiF <sub>4</sub> and He             |  |
| 36)    | 1 mole of $H_2SO_4$ is mixed with 2 moles of NaC                                                           | OH. The heat evolved will                                                                                         | l be:                                  |  |
|        | a) $57.3 \text{ kJ}$                                                                                       | b) $2 \times 57.3$ kJ                                                                                             |                                        |  |
| 27)    | c) $5/.3/2$ KJ<br>Which of the fellowing factors will show as the                                          | d) cannot be predicted                                                                                            | under al fam dha ann adir a h-atara an |  |
| 37)    | which of the following factors will change the $N_2$ and $O_2$ ?                                           | e value of equilibrium con                                                                                        | istant for the reaction between        |  |
|        | a) increasing concentration of $N_2$ and $O_2$                                                             | b) increasing pressure                                                                                            |                                        |  |
| 20)    | c) increasing temperature                                                                                  | d) adding a catalyst                                                                                              | $f \Lambda = C = O^{2}$                |  |
| 30)    | which is the correct representation for the solution $\frac{1}{2}$                                         | $\frac{1}{2}$ ionity product constant of                                                                          | $Ag_2 \cup I \cup 4$                   |  |
|        | a) $[Ag^+]^2 [CrO_4^{2^-}]$                                                                                | b) $[Ag^+][CrO_4^{2^-}]^-$                                                                                        |                                        |  |
|        | c) $[2Ag^+][CrO_4^{2^-}]$                                                                                  | d) $[2Ag^+]^2 [CrO_4^{2^-}]$                                                                                      |                                        |  |
| 39)    | The electronic configuration of an element is $1s^2 2s^2 2p^6 3s^2 3p^3$ . What is the atomic number of an |                                                                                                                   |                                        |  |
|        | element which is just below the above element                                                              | t in the periodic table?                                                                                          | 1) 40                                  |  |
|        | a) 33 b) 34                                                                                                | c) 31                                                                                                             | a) 49                                  |  |



| 55) | For production of beats, the two sources must be:                                                      |                       |                                      |                                 |
|-----|--------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------------|---------------------------------|
|     | a) coherent of same free                                                                               | quency                | b) incoherent of same f              | requency                        |
|     | c) coherent of slightly of                                                                             | different frequencies | d) incoherent of slightly            | different frequencies           |
| 56) | The electric field intensity at the surface of a charged conductor is:                                 |                       |                                      |                                 |
|     | a) zero                                                                                                |                       | b) directed normally to the surface  |                                 |
|     | c) directed tangentially to the surface                                                                |                       | d) directed along 45° to the surface |                                 |
| 57) | ) Two bulbs one of 25 W 220 V and another of 100 W, 220 V are connected in series across 220 T         |                       |                                      | d in series across 220 V mains. |
|     | The current:                                                                                           |                       |                                      |                                 |
|     | a) through 25 W bulb is more                                                                           |                       | b) through 100 W bulb is more        |                                 |
|     | c) is same in the two bulbs                                                                            |                       | d) is zero in the two bulbs          |                                 |
| 58) | Temperature coefficient of resistance of semiconductor is:                                             |                       |                                      |                                 |
|     | a) zero                                                                                                | b) constant           | c) positive                          | d) negative                     |
| 59) | Which of the following can be used to generate Radiowaves?                                             |                       |                                      |                                 |
|     | a) Rectifier                                                                                           | b) Modulator          | c) Amplifier                         | d) Oscillator                   |
| 60) | A ball of superconducting material is dipped in liquid nitrogen and placed near a bar magnet. In which |                       |                                      |                                 |
|     | direction will it move?                                                                                |                       |                                      |                                 |
|     | a) away from bar magnet<br>c) around the bar magnet                                                    |                       | b) towards the bar magnet            |                                 |
|     |                                                                                                        |                       | d) remain constant                   |                                 |

#### <u>SECTION – B (2 marks)</u> (2\*40=80)

Read the following passage and answer the questions given below (61-64):

Greyhound racing is the sixth most popular spectator sport in the United States. Over the last decade, a growing number of racers have been adopted to spend their retirement as household pets, once their racing careers are over.

Many people hesitate to adopt a retired racing greyhound because they think only very old dogs are available. Actually, even champion racers only work until they are about three-and-a-half years old. Because greyhounds usually live to be 12 to 15 years old, their retirement is much longer than their racing careers.

People worry that a greyhound will be more nervous and active than other breeds and will need a large space to run. These are false impressions. Greyhounds have naturally sweet, mild dispositions, and while they love to run, they are sprinters rather than distance runners and are sufficiently exercised with a few daily laps around a fenced-in backyard.

Greyhounds do not make good watchdogs, but they are very good with children, get along well with other dogs (and usually cats as well), and are affectionate and loyal. They are intelligent, well-behaved dogs, usually housebroken in only a few days. A retired racing greyhound is a wonderful pet for almost anyone.

| 61) | According to the passage, adopting a grey | hound is a good idea for people who: |
|-----|-------------------------------------------|--------------------------------------|
|     | a) do not have children.                  | b) live in apartments.               |
|     | c) do not usually like dogs.              | d) already have another dog of       |

d) already have another dog or a cat.

- 62) Which of the following is implied by the passage?
  - a) The public is more aware of greyhounds than they used to be.
  - b) Greyhounds are more competitive than other dogs.
  - c) Greyhound racing should not be allowed.
  - d) People who own pet rabbits should not adopt greyhounds.
  - One drawback of adopting a greyhound is that:
  - a) greyhounds are not good with children.
    - b) greyhounds are old when they retire from racing.
    - c) the greyhound's sensitivity makes it temperamental.
    - d) greyhounds are not good watch dogs.
- This passage is most like an advertisement because it: 64)
  - a) uses statistics to prove its point.

63)

- b) does not present information to substantiate its claims.
- c) says nothing negative about greyhounds.
- d) encourages people to do something.

| 65)          | In a triangle ABC, if $\angle A = 30^\circ$ , $b = 8$ , $a = 6$ and $B = \sin^{-1} x$ , then x is equal to: |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |
|--------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
|              | a) 1                                                                                                        | b) 1/2                                        | c) 1/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | d) 2/3                                |
| 66)          | If sin $\theta$ is geometric m                                                                              | ean between sin $\phi$ and c                  | os $\phi$ , then $\cos 2\theta =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |
|              | a) $2sin^2\left(\frac{\pi}{4}-\phi\right)$                                                                  |                                               | b) $2cos^2\left(\frac{\pi}{4}-\phi\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |
|              | c) $2cos^2\left(\frac{\pi}{4}+\phi\right)$                                                                  |                                               | d) $2sin^2\left(\frac{\pi}{4}+\phi\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |
| 67)          | $\lim_{x \to \frac{\pi}{2}} \left[ x \tan x - \left(\frac{\pi}{2}\right) \sec x \right]$                    | x] is equal to:                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |
|              | a) 1                                                                                                        | b) -1                                         | c) 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | d) $\pi/2$                            |
| 68)          | Let a function $f(x)$ be                                                                                    | defined by $f(x) = \frac{x -  x }{ x }$       | $\frac{-1}{2}$ Then which of the fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | llowing is not true?                  |
| 00)          | a) discontinuous at $r =$                                                                                   | x = 0                                         | b) discontinuous at $x =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - 1                                   |
|              | c) not differentiable at                                                                                    | r = 0                                         | d) not differentiable at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | r = 1                                 |
| ( <b>0</b> ) | d $\begin{bmatrix} -1 & (\sqrt{x}(3-x)) \end{bmatrix}$                                                      | $\lambda = 0$                                 | d) not uniterentiable at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n = 1                                 |
| 69)          | $\frac{1}{dx} \left[ \tan \left( \frac{1}{1-3x} \right) \right] =$                                          |                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |
|              | a) $\frac{1}{2(1+r)\sqrt{r}}$                                                                               |                                               | b) $\frac{3}{(1+r)\sqrt{r}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
|              | $\frac{2}{2}$                                                                                               |                                               | $d) \frac{3}{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |
|              | $(1+x)\sqrt{x}$                                                                                             |                                               | $(1)_{2(1+x)\sqrt{x}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |
| 70)          | The curves $4x^2 + 9y^2$                                                                                    | $= 72 \text{ and } x^2 - y^2 = 5$             | at $(3, 2)$ :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |
|              | a) touch each other $45^{\circ}$                                                                            |                                               | b) cut orthogonally $d$ intersect at 60°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |
| -1           | c) intersect at 45                                                                                          |                                               | d) intersect at 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |
| 71)          | If $\int_{\sqrt{2}} \frac{1}{x\sqrt{x^2-1}} = \frac{1}{12}$ , then                                          | 1 x 1s equal to:                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |
|              | a) 1/2                                                                                                      | b) 2                                          | c) -3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | d) -1/2                               |
| 72)          | The area bounded by the                                                                                     | the semicircle $y = \sqrt{4} - x$             | $x^2$ and its diameter $y = \int_{-\infty}^{\infty} \frac{1}{2} \int_{$ | 0 is:                                 |
|              | a) 2π                                                                                                       | b) <i>π</i>                                   | c) $\frac{\pi}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | d) $\frac{\pi}{4}$                    |
| 73)          | If the coefficients of $x^2$                                                                                | $x^2$ and $x^3$ in the expansion              | $1 \text{ of } (3 + ax)^9 \text{ are equal}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , then the value of a is:             |
|              | a) 3                                                                                                        | b) 9/7                                        | c) 7/9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | d) -3                                 |
| 74)          | The standard deviation the new data is:                                                                     | of a set of data is 10. If                    | each value is increased                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | by 5, the standard deviation of       |
|              | a) 5                                                                                                        | b) 10                                         | c) 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | d) 20                                 |
| 75)          | If $z = -\frac{2}{1+\sqrt{3}i}$ , then va                                                                   | alue of arg $(z)$ is:                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |
|              | a) <i>π</i>                                                                                                 | b) $\frac{\pi}{3}$                            | c) $\frac{2\pi}{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | d) $\frac{\pi}{4}$                    |
| 76)          | The domain of the fund                                                                                      | $e^{\sqrt{5x-3-2x^2}}$                        | is:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |
| ,            | a) $(1,\frac{3}{2})$                                                                                        |                                               | b) $\left[1,\frac{3}{2}\right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |
|              | (-, 2)                                                                                                      |                                               | $\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |
| 77)          | The extremities of a dia                                                                                    | meter of a circle have co                     | ordinates $(-4, 3)$ and $(12)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -1) The length of the intercept       |
| ,            | which the circle makes                                                                                      | on v-axis is:                                 | oraliates ( 1, 5) and (12,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <i>i)</i> The lengen of the intercept |
|              | a) $\sqrt{13}$                                                                                              | b) $2\sqrt{13}$                               | c) $3\sqrt{13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | d) $4\sqrt{13}$                       |
| 78)          | The distance between t                                                                                      | the directrices of a rectai                   | ngular hyperbola is 10 u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nits, then the distance between       |
| <i>,</i>     | its foci is:                                                                                                |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |
|              | a) 10√2                                                                                                     | b) 5                                          | c) $5\sqrt{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | d) 20                                 |
| 79)          | If projection of the lin                                                                                    | e segment joining points                      | (a, 1, 0) and $(1, -2, 3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ) on a line which makes equal         |
|              | angles with three axes                                                                                      | is $\frac{2}{\sqrt{2}}$ , then the value of ' | a' is:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |
|              | a) 1                                                                                                        | b) 2                                          | c) 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 (b                                  |
| 80)          | M is the molecular we                                                                                       | eight of KMnO <sub>4</sub> . The ec           | uivalent weight of KM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $nO_4$ when it is converted into      |
| <i>,</i>     | K <sub>2</sub> MnO <sub>4</sub> is:                                                                         | 0                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |
|              | a) M                                                                                                        | b) M/3                                        | c) M/5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | d) M/7                                |
| 81)          | The Emf of the cell                                                                                         | $Mg Mg^{2+}(0.01 M)  S $                      | $n^{2+}(0.1 \text{ M}) \text{Sn} \text{ at } 298$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | K is: (Given, $E^0_{Mg^{2+},Mg} =$    |
|              | $-2.34 \text{ V}, \text{E}^{0}_{\text{Sn}^{2+},\text{Sn}} = -0.14 \text{ V})$                               |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |
|              | a) 2.17 V                                                                                                   | b) 2.23 V                                     | c) 2.57 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | d) 2.45 V                             |

A first order reaction is 75% complete after 32 minutes. When was 50% of the reaction completed? 82) c) 16 min a) 4 min b) 8 min d) 32 min An organic compound made of C, H and N contains 20% nitrogen. Its molecular weight is: 83) a) 70 b) 140 c) 100 d) 65 Which one of the transition metal ions is coloured? 84) c) *Sc*<sup>3+</sup> d) *V*<sup>4+</sup> b) *Zn*<sup>2+</sup> a) *Cu*<sup>+</sup> One gas bleach the colours of flowers by reduction and the other by oxidation. The two gases are 85) respectively: a)  $Cl_2$  and  $SO_2$ b) Br<sub>2</sub> and H<sub>2</sub>S c) SO<sub>2</sub> and Cl<sub>2</sub> d) NH<sub>3</sub> and SO<sub>2</sub>  $C_2H_2 \xrightarrow{\text{HgSO}_4/\text{H}_2\text{SO}_4,\text{H}_2\text{O}} X \rightleftharpoons Y.$  Here, Y is: 86) a) CH<sub>3</sub>CH<sub>2</sub>OH b)  $CH_2 = CH - OH$ c) CH<sub>3</sub>CH<sub>2</sub>CHO d) CH<sub>3</sub>CHO 87) Propanal on treatment with dil. NaOH forms: a) CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CHO b) CH<sub>3</sub>CH<sub>2</sub>CH(OH)CH<sub>2</sub>CH<sub>2</sub>CHO c) CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH(OH)CH<sub>2</sub>CHO d) CH<sub>2</sub>CH<sub>2</sub>CH(OH)CH(CH<sub>3</sub>)CHO A string passing over a pulley contains 10 kg and 6 kg masses connected at its ends. The 6 kg mass 88) hangs vertically, while 10 kg block is placed on the table. If the system is in dynamic equilibrium, i.e., moves with constant speed, the coefficient of dynamic friction is: b) 0.6 a) 0.3 c) 0.10 d) 1.67 89) A thin circular disc of mass M and radius R rotating about its axis with a constant angular velocity  $\omega$ . Two objects each of mass m are attached gently to the opposite ends of the diameter of the disc. The disc now rotates with an angular velocity: a)  $\frac{\omega M}{M+m}$ a)  $\frac{\omega M}{M+m}$  b)  $\frac{\omega M}{M+2m}$  c)  $\frac{\omega M}{M+4m}$  d)  $\frac{\omega (M-2m)}{M+2m}$ Escape velocity of a body from earth is about 11 km/s. Assuming the mass and radius of earth to be b)  $\frac{\omega M}{M+2m}$ 90) about 81 and 4 times the mass and radius of moon respectively, the escape velocity in km/s from the surface of moon will be: a) 0.54 b) 2.44 c) 11 d) 49.5 91) A particle executes S.H.M. Its velocities are  $v_1$  and  $v_2$  at displacements  $x_1$  and  $x_2$  from the mean position. The period of oscillation will be: a)  $2\pi \sqrt{\left(\frac{x_2^2 - x_1^2}{v_1^2 - v_2^2}\right)}$ b)  $2\pi \sqrt{\left(\frac{v_1^2 - v_2^2}{x_2^2 - x_1^2}\right)}$ d)  $2\pi \sqrt{\left(\frac{v_1^2 + v_2^2}{x_2^2 + x_1^2}\right)}$ c)  $2\pi \sqrt{\left(\frac{x_2^2 + x_1^2}{v_1^2 + v_2^2}\right)}$ 92) Assuming no heat losses, the heat released by the condensation of x gm of steam at 100°C can be used to convert y gm of ice at 0°C into water at 100°C, the ratio of x: y is: a) 1:1 b) 1:2 c) 1:3 d) 3:1 93) Heat is flowing through two cylindrical rods of same material. The diameters of the rods are in the ratio 1:2 and their lengths are in the ratio 2:1. If the temperature difference between their ends is same, then the ratio of amounts of heat conducted through them per unit time will be: a) 1:1 b) 2:1 c) 1:4 d) 1:8 A biconvex lens has a focal length 2/3 times the radius of curvature of either surface. The refractive 94) index of the lens is: a) 1.75 b) 1.33 c) 1.5 d) 1.0 In Young's double slit experiment carried out with light of wavelength  $\lambda = 5000$  Å, the distance 95) between the slits is 0.2 mm and the screen is 2.00 metre away from the slits. The central maximum is at n = 0. The third maximum will be at a distance x (from central maximum) equal to: a) 1.67 cm b) 1.5 cm c) 0.5 cm d) 5.0 cm

- 96) An object producing a pitch of 400 Hz flies past a stationary person. The object was moving in a straight line with a velocity 200 m/s. The velocity of sound is 300 m/s. The frequency of sound heard by the stationary person when the object is approaching him, is equal to:
  a) 240 Hz
  b) 96 Hz
  c) 1200 Hz
  d) 960 Hz
- 97) Two-point charges +9e and +e is kept at distance 'a' from each other. A third charge is placed at distance 'x' from +9e on the line joining the above two charges. For the third charge to be in equilibrium, 'x' should be:
  a) a b) a/2 c) 3a/4 d) 3a/8
- 98) In the circuit shown below, what is the value of unknown resistor 'R' so that the total resistance of the circuit between points P and Q is also equal to R?

a) 3  $\Omega$  b)  $\sqrt{39} \Omega$  c)  $\sqrt{69} \Omega$  d) 10  $\Omega$ 

99) An LR circuit consists of a resistance of 50  $\Omega$  and a coil of inductive reactance 120  $\Omega$ . If the circuit is connected across 260-volt ac mains, the current in the circuit is:

a) 2 A b) 
$$\frac{26}{17}$$
 A c)  $\frac{26}{5}$  A d)  $\frac{13}{6}$  A

100) The wavelength of radiation emitted is  $\lambda_0$ , when an electron jumps from the third to the second orbit of hydrogen atom. For the electron jump from the fourth to the second orbit of the hydrogen atom, the wavelength of radiation emitted will be:

a) 
$$\frac{16}{25}\lambda_0$$
 b)  $\frac{20}{27}\lambda_0$  c)  $\frac{27}{20}\lambda_0$  d)  $\frac{25}{16}\lambda_0$ 

\*\*\* Thank You!!! \*\*\*\*