BEATS HIGHCARECLASS

CEE MODEL ENTRANCE EXAM

<u>(SET-4)</u>

Instructions:

- There are 200 multiple-choice questions, each having four choices of which only one choice is correct.
- Fill (●) the most appropriate one.

Date : 2081/09/20 (Jan 04) **Duration** : 3 hours **Time :** 7 A.M. – 10 A.M.

1	If a change a is alread.	at the company of the line isin	ing true a grant liter share	as O the creaters of three swill be in a swilling		
1.	If a charge q is placed at the centre of the line joining two equal like charges Q, the system of three will be in equilibrium					
		0	0			
	a) $-\frac{Q}{2}$	b) $-\frac{Q}{4}$	c) $+\frac{Q}{2}$	d) +4Q		
2	$\frac{1}{2}$ What is the flux through a suba of side bl if a point share of a is at one of its corner?					
۷.	2. What is the flux through a cube of side a if a point charge of q is at one of its corner?					
	a) $\frac{-4}{\epsilon_0}$	b) $\frac{4}{8\varepsilon_0}$	c) $\frac{\mathbf{q}}{\epsilon_0}$	d) $\frac{4}{2\epsilon_0} \cdot 6a^2$		
3	A spherical drop of car	pacitance 1µF is broken int	o eight drops of equal ra	dius. The capacitance of each small drop is		
0.	1	1	1	ands. The capacitance of each small crop is		
	a) $\frac{1}{2}$ µF	b) $\frac{1}{4}$ µF	c) $\frac{1}{8}$ µF	d) 8 µF		
4.	A wave is reflected fro	m a rigid support. The cha	nge in phase on reflectio	n will be		
	、π	π		1) 0		
	a) $\frac{1}{4}$	(b) $\frac{1}{2}$	c) π	a) 2π		
5.	If the tension and diar	neter of a sonometer wire	of fundamental frequenc	y 'f' are doubled and density is halved, then its		
	fundamental frequenc	y will become				
	a) $\frac{f}{f}$	$b)\sqrt{2}$	c) f	d) $\frac{f}{z}$		
	⁽¹⁾ 4	c) <u>v</u> =		$\sqrt{2}$		
6	A sound source is mo	ving towards a stationary	observer with $\frac{1}{2}$ of the	speed of sound. The ratio of apparent to real		
0.	A sound source is ino	ving towards a stationary	10 ^{or the}	spece of sound. The fails of apparent to rear		
	frequency is		0	2		
	$2)\frac{10}{10}$	$h)\frac{11}{1}$	$(\frac{11}{2})^2$	$(\frac{9}{9})^2$		
	^{a)} 9	^{b)} 9	(10)	(10)		
7.	Boiling water is chang	ing into steam. Under this	condition specific heat o	f water is		
0	a) 1	(b) zero	c) < 1	d)∞		
8.	Two metallic rods of s	ame length, same material	, same area of cross-section	on are connected in (a) Series and (b) Parallel.		
	The conductivity of the V	V e combination would be (F	s is conductivity of each	roa)		
	a) 2K, $\frac{K}{2}$	b) $\frac{K}{2}$, 2K	c) K, K	d) 2K, 2K		
9	When you make ice cu	hes the entrony of water				
<i>J</i> .	a) does not change	bes, the entropy of water	b) increases			
	c) decreases		d) may either increase of	r decrease depending on the process used		
10.	An ideal gas is compre	essed to half of its initial v	olume by means of seve	ral process. Which of the process results in the		
	maximum work done	on the gas?	•			
	a) Isothermal	b) Adiabatic	c) Isobaric	d) Isochoric		
11.	An ideal heat engine v	vorking between temperat	ure T_1 and T_2 has an effi	ciency η . The new efficiency if both the source		
	and sink temperatures	are doubled, will be				
	a) $\frac{\eta}{2}$	b) n	c) 2n	d) 3n		
10						
12.	The temperature of a b	(b) 25%	50%, then the percentage	(d) 500%		
12	a) 100%	(D) 25%	(C) 400 %	(a) 500%		
13.	observer on earth surf:	elocity of spin of earth, th	ien mitu angulai velocity	of a geo-stationary satellite with respect to an		
	observer on curtit suit		me			
	a) we	b) 2ωe	$c)\frac{\omega c}{2}$	d)zero		
14.	Which of the following	g is axial vector?	-			
	a) Force	(b) Velocity	c) Electric field	d) Magnetic field		
15.	A body is projected from ground surface with velocity 'u' at angle θ with horizontal. Find the time at which its velo					
	becomes perpendicular with initial direction.					
	$\frac{u}{1}$	$\frac{u}{1}$	c) <u>u</u>	d) uCot0		
	a) gCos θ	^{b)} gCotθ	^{c)} gSinθ	u) ucoto		
16.	A cubical block is floa	ting in water with 'h' dept	h immersed. If the syster	n is moved vertically upward with acceleration		
	the immersed depth be	ecomes 'H'				
18	a) $h < H$	b) $h > H$	c) $h = H$	d) $H >>>> h$		
17.	A tunnel is dug throug	gnout the diameter of earth	h and a body is released	from one end. If K is radius of earth, then find		
	a) 84.6 min	b) 1 br	c) 24 hr	d) 1 min		
18.	If external torque actin	g on a body is zero, then	c) 24 III			
	is conserved					
c) K.E momentum is conserved d) All of the above						
19.	Viscosity of ideal fluid	l is				
	a) zero	b) ∞	c) finite but not zero	d) undefined		
20.	When two or more soap bubbles come in contact, angle between contact interface is					
•	a) 60° b) 120° c) 180° d) 0°					
21.	Total energy of satellit	te moving around earth is	a)			
	a) positive	uj -ve	c) zero	u) may be +ve, -ve & zero		

38.	Specific charge is least	for				
	a) α-particles	b) proton	c) positron	d) positive meson		
39.	If work function of a m	etal surface is 2ev, its thre	shold wavelength of rad	iation is		
	a) 6100 nm	b) 6100 A	c) 6188 nm	d) 6188 A		
40.	A photocell converts light energy into electrical energy by					
	a) ejecting photoelectroi	15	d) none			
41	c) developing emi a) none If an electron and proton have same de-Broglie wavelength then					
	a) the proton has greater	r momentum	b) electron has greater m	nomentum		
	c) both have zero mome	entum	d) both have equal mom	ientum		
42.	The spectral series of h	ydrogen which lies entirel	y in the ultraviolet part i	s		
	a) Lyman	b) Paschen	c) Balmer	d) Pfund		
43.	The volume of nucleus	is directly proportional to	·			
	a) A	b) A ³	c) \sqrt{A}	d) A ^{1/3}		
44.	With the fall of tempera	ature, the forbidden energ	y gap of semiconductor			
	a) increases		b) decreases			
45	c) remains unchanged	1	d)sometimes increases a	nd sometimes decreases		
45.	A semiconductor doped	a with a donor impurity is		d) non true		
16	a) p-type	b) n-type	c) npn type	a) php type		
40.	a) forward bias exceeds	a certain value	b) reverse bias exceeds a	certain value		
	c) forward current excee	eds a certain value	d) the potential barrier is	s reduced to zero		
47.	The current gain in con	nmon base transistor is 0.9	5. This current gain of sa	me transistor in common emitter mode is		
	a) 95	b) 45	c) 38	d) 19		
48.	The output is low when	n either of input is high, th	en this represents which	of the following gates		
	a) OR	b) NOR	c) AND	d) NAND		
49.	The tail of comet is due	to				
	a) a cooling of water in t	the comet	b) vaporization of heat in	n the comet		
50	c) vaporization of water	on comet	d) sublimation of vapou	r in the comet		
50.	At what speed the kine $2c$	the energy of a particle is c	3	y of particle:		
	a) $\frac{2c}{3}$		b) $\frac{3}{2}$ c			
	2,50		32/20			
	c) $\frac{2\sqrt{2c}}{3}$		d) $\frac{3\sqrt{2c}}{2}$			
			, ,			
51.	The simplest formula o	of a compound containing	50% of element X (atom	ic mass 10) and 50% of element Y (atomic mass		
51.	The simplest formula o 20) is	of a compound containing	50% of element X (atom	ic mass 10) and 50% of element Y (atomic mass		
51.	The simplest formula o 20) is a) XY	of a compound containing b) X ₂ Y	50% of element X (atom c) XY ₃	ic mass 10) and 50% of element Y (atomic mass d) X ₂ Y ₃		
51. 52.	The simplest formula o 20) is a) XY Which of the following	of a compound containing b) X ₂ Y ; sets of quantum numbers	50% of element X (atom c) XY ₃ s is not permitted?	ic mass 10) and 50% of element Y (atomic mass d) X ₂ Y ₃		
51. 52.	The simplest formula of 20) is a) XY Which of the following a) $n = 3, l = 3, m = 0, s = -1$	of a compound containing b) X_2Y c sets of quantum numbers + $\frac{1}{2}$	50% of element X (atom c) XY_3 is not permitted? b) $n = 3, 1 = 2, m = +2, s$	ic mass 10) and 50% of element Y (atomic mass d) X_2Y_3 = $\frac{1}{2}$		
51. 52.	The simplest formula of 20) is a) XY Which of the following a) n = 3, 1 = 3, m =0, s = -	of a compound containing b) X_2Y c sets of quantum numbers $+\frac{1}{2}$	 50% of element X (atom c) XY₃ s is not permitted? b) n = 3, 1 = 2, m = + 2, s 	ic mass 10) and 50% of element Y (atomic mass d) X_2Y_3 = $\frac{1}{2}$		
51. 52.	The simplest formula o 20) is a) XY Which of the following a) n = 3, 1 = 3, m =0, s = - c) m = 3, 1 = 2, m = - 2, -	of a compound containing b) X_2Y sets of quantum numbers $+\frac{1}{2}$ $\cdot\frac{1}{2}$	 50% of element X (atom c) XY₃ s is not permitted? b) n = 3, 1 = 2, m = + 2, s d) n = 3, 1 = 0, m = 0, s = 	ic mass 10) and 50% of element Y (atomic mass d) X_2Y_3 = $\frac{1}{2}$ + $\frac{1}{2}$		
51. 52.	The simplest formula of 20) is a) XY Which of the following a) $n = 3, 1 = 3, m = 0, s = -2, -$ c) $m = 3, 1 = 2, m = -2, -$ Which of the following	of a compound containing b) X_2Y sets of quantum numbers $+\frac{1}{2}$ $\frac{1}{2}$	 50% of element X (atom c) XY₃ s is not permitted? b) n = 3, 1 = 2, m = + 2, s d) n = 3, 1 = 0, m = 0, s = 	ic mass 10) and 50% of element Y (atomic mass d) X_2Y_3 = $\frac{1}{2}$ + $\frac{1}{2}$		
51. 52. 53.	The simplest formula of 20) is a) XY Which of the following a) $n = 3, 1 = 3, m = 0, s = -2, -$ c) $m = 3, 1 = 2, m = -2, -$ Which of the following a) C ⁴ -	of a compound containing b) X_2Y controls by the set of quantum numbers $+\frac{1}{2}$ $\frac{1}{2}$ controls controls controls the set of the set o	 50% of element X (atom c) XY₃ s is not permitted? b) n = 3, 1 = 2, m = + 2, s d) n = 3, 1 = 0, m = 0, s = ximum? c) O²⁻ 	ic mass 10) and 50% of element Y (atomic mass d) X_2Y_3 = $\frac{1}{2}$ + $\frac{1}{2}$ d) Mg ²⁺		
51.52.53.54.	The simplest formula of 20) is a) XY Which of the following a) $n = 3, 1 = 3, m = 0, s = -2, -$ c) $m = 3, 1 = 2, m = -2, -$ Which of the following a) C ⁴ - The compound which of	of a compound containing b) X_2Y sets of quantum numbers $+\frac{1}{2}$ $\frac{1}{2}$ sionic radius would be ma b) N ³⁻ contains ionic as well as co	50% of element X (atom c) XY ₃ s is not permitted? b) n = 3, 1 = 2, m = + 2, s d) n = 3, 1 = 0, m = 0, s = ximum? c) O ²⁻ walent bonds is	ic mass 10) and 50% of element Y (atomic mass d) X_2Y_3 = $\frac{1}{2}$ + $\frac{1}{2}$ d) Mg ²⁺		
 51. 52. 53. 54. 	The simplest formula of 20) is a) XY Which of the following a) $n = 3$, $1 = 3$, $m = 0$, $s = -2$, -2 C) $m = 3$, $1 = 2$, $m = -2$, -2 Which of the following a) C ⁴ - The compound which of a) C ₂ H ₄ Cl ₂	of a compound containing b) X_2Y sets of quantum numbers $+\frac{1}{2}$ $\frac{1}{2}$ cionic radius would be ma b) N ³⁻ contains ionic as well as co b) CH ₃ I	50% of element X (atom c) XY ₃ s is not permitted? b) n = 3, 1 = 2, m = + 2, s d) n = 3, 1 = 0, m = 0, s = eximum ? c) O ²⁻ evalent bonds is c) KCN	ic mass 10) and 50% of element Y (atomic mass d) X_2Y_3 = $\frac{1}{2}$ + $\frac{1}{2}$ d) Mg ²⁺ d) H ₂ O ₂		
 51. 52. 53. 54. 55. 	The simplest formula of 20) is a) XY Which of the following a) $n = 3, 1 = 3, m = 0, s = -2, -$ C) $m = 3, 1 = 2, m = -2, -$ Which of the following a) C ⁴ - The compound which of a) C ₂ H ₄ Cl ₂ In the reaction, SO ₂ + 2	of a compound containing b) X_2Y c sets of quantum numbers $+\frac{1}{2}$ $\frac{1}{2}$ c ionic radius would be ma b) N ³⁻ contains ionic as well as co b) CH ₃ I H ₂ S \rightarrow 3 S + 2 H ₂ O, the su	 50% of element X (atom c) XY₃ s is not permitted? b) n = 3, 1 = 2, m = + 2, s d) n = 3, 1 = 0, m = 0, s = ximum? c) O²⁻ valent bonds is c) KCN ubstance oxidised is 	ic mass 10) and 50% of element Y (atomic mass d) X_2Y_3 = $\frac{1}{2}$ + $\frac{1}{2}$ d) Mg ²⁺ d) H ₂ O ₂		
 51. 52. 53. 54. 55. 	The simplest formula of 20) is a) XY Which of the following a) $n = 3, 1 = 3, m = 0, s = -2, -$ C) $m = 3, 1 = 2, m = -2, -$ Which of the following a) C ⁴ - The compound which of a) C ₂ H ₄ Cl ₂ In the reaction, SO ₂ + 2 a) H ₂ S	b) X_2Y sets of quantum numbers $+\frac{1}{2}$ $\frac{1}{2}$ stonic radius would be ma b) N ³⁻ contains ionic as well as co b) CH ₃ I H ₂ S \rightarrow 3 S + 2 H ₂ O, the su b) SO ₂	50% of element X (atom c) XY ₃ s is not permitted? b) $n = 3, 1 = 2, m = + 2, s$ d) $n = 3, 1 = 0, m = 0, s =$ ximum? c) O ²⁻ vvalent bonds is c) KCN bstance oxidised is c) S	ic mass 10) and 50% of element Y (atomic mass d) X_2Y_3 = $\frac{1}{2}$ + $\frac{1}{2}$ d) Mg ²⁺ d) H ₂ O ₂ d) H ₂ O		
 51. 52. 53. 54. 55. 56. 	The simplest formula of 20) is a) XY Which of the following a) $n = 3, 1 = 3, m = 0, s = -2, -$ C) $m = 3, 1 = 2, m = -2, -$ Which of the following a) C ⁴ - The compound which of a) C ₂ H ₄ Cl ₂ In the reaction, SO ₂ + 2 a) H ₂ S Each unit cell of NaCl of	b) X_2Y sets of quantum numbers $+\frac{1}{2}$ $\frac{1}{2}$ stionic radius would be ma b) N ³⁻ contains ionic as well as co b) CH ₃ I H ₂ S \rightarrow 3 S + 2 H ₂ O, the su b) SO ₂ consists of 13 Cl ⁻ ions and	50% of element X (atom c) XY ₃ s is not permitted? b) $n = 3, 1 = 2, m = +2, s$ d) $n = 3, 1 = 0, m = 0, s =$ ximum? c) O ²⁻ valent bonds is c) KCN ubstance oxidised is c) S	ic mass 10) and 50% of element Y (atomic mass d) X_2Y_3 = $\frac{1}{2}$ + $\frac{1}{2}$ d) Mg ²⁺ d) H ₂ O ₂ d) H ₂ O		
 51. 52. 53. 54. 55. 56. 	The simplest formula of 20) is a) XY Which of the following a) $n = 3, 1 = 3, m = 0, s = -2, -2$ c) $m = 3, 1 = 2, m = -2, -2$ Which of the following a) C ⁴ - The compound which of a) C ₂ H ₄ Cl ₂ In the reaction, SO ₂ + 2 a) H ₂ S Each unit cell of NaCl of a) 13 Na ⁺	b) X_2Y sets of quantum numbers $+\frac{1}{2}$ $\frac{1}{2}$ ionic radius would be ma b) N ³⁻ contains ionic as well as co b) CH ₃ I H ₂ S \rightarrow 3 S + 2 H ₂ O, the su b) SO ₂ consists of 13 Cl ⁻ ions and b) 14 Na ⁺	 50% of element X (atom c) XY₃ b not permitted? b) n = 3, 1 = 2, m = + 2, s d) n = 3, 1 = 0, m = 0, s = ximum? c) O²⁻ valent bonds is c) KCN bstance oxidised is c) S c) 6 Na⁺ 	ic mass 10) and 50% of element Y (atomic mass d) X_2Y_3 = $\frac{1}{2}$ + $\frac{1}{2}$ d) Mg ²⁺ d) H ₂ O ₂ d) H ₂ O d) 4 Na+		
 51. 52. 53. 54. 55. 56. 57. 	The simplest formula of 20) is a) XY Which of the following a) $n = 3, 1 = 3, m = 0, s = -2, -2$ C) $m = 3, 1 = 2, m = -2, -2$ Which of the following a) C ⁴ - The compound which of a) C ₂ H ₄ Cl ₂ In the reaction, SO ₂ + 2 a) H ₂ S Each unit cell of NaCl of a) 13 Na ⁺ A catalyst in a finely di	b) X_2Y sets of quantum numbers $+\frac{1}{2}$ $\frac{1}{2}$ ionic radius would be ma b) N ³⁻ contains ionic as well as co b) CH ₃ I H ₂ S \rightarrow 3 S + 2 H ₂ O, the su b) SO ₂ consists of 13 Cl ⁻ ions and b) 14 Na ⁺ vided state is more efficie	50% of element X (atom c) XY ₃ s is not permitted? b) $n = 3, 1 = 2, m = + 2, s$ d) $n = 3, 1 = 0, m = 0, s =$ eximum? c) O ²⁻ evalent bonds is c) KCN ebstance oxidised is c) S c) 6 Na ⁺ nt because in this state	ic mass 10) and 50% of element Y (atomic mass d) X ₂ Y ₃ = $\frac{1}{2}$ + $\frac{1}{2}$ d) Mg ²⁺ d) H ₂ O ₂ d) H ₂ O d) 4 Na+		
 51. 52. 53. 54. 55. 56. 57. 	The simplest formula of 20) is a) XY Which of the following a) $n = 3, 1 = 3, m = 0, s = -2, -$ Which of the following a) C ⁴ - The compound which of a) C ₂ H ₄ Cl ₂ In the reaction, SO ₂ + 2 a) H ₂ S Each unit cell of NaCl of a) 13 Na ⁺ A catalyst in a finely di a) It has a larger activati	b) X_2Y sets of quantum numbers $+\frac{1}{2}$ $\frac{1}{2}$ sionic radius would be ma b) N ³⁻ contains ionic as well as co b) CH ₃ I H ₂ S \rightarrow 3 S + 2 H ₂ O, the su b) SO ₂ consists of 13 Cl ⁻ ions and b) 14 Na ⁺ vided state is more efficie ion energy	50% of element X (atom c) XY ₃ s is not permitted? b) $n = 3, 1 = 2, m = + 2, s$ d) $n = 3, 1 = 0, m = 0, s =$ ximum? c) O ²⁻ valent bonds is c) KCN bbstance oxidised is c) S c) 6 Na ⁺ nt because in this state	ic mass 10) and 50% of element Y (atomic mass d) X_2Y_3 = $\frac{1}{2}$ + $\frac{1}{2}$ d) Mg ²⁺ d) H ₂ O ₂ d) H ₂ O d) 4 Na+		
 51. 52. 53. 54. 55. 56. 57. 	The simplest formula of 20) is a) XY Which of the following a) $n = 3, 1 = 3, m = 0, s = -2, -$ Which of the following a) C ⁴ - The compound which of a) C ₂ H ₄ Cl ₂ In the reaction, SO ₂ + 2 a) H ₂ S Each unit cell of NaCl of a) 13 Na ⁺ A catalyst in a finely di a) It has a larger activati b) It can react with one of a) L bas a larger activati	b) X_2Y 5 sets of quantum numbers $+\frac{1}{2}$ $\frac{1}{2}$ 5 contains ionic as well as co b) N^{3-} contains ionic as well as co b) CH_3I H ₂ S \rightarrow 3 S + 2 H ₂ O , the sub b) SO ₂ consists of 13 CI⁻ ions and b) 14 Na ⁺ vided state is more efficie on energy of the reactants more efficie	50% of element X (atom c) XY ₃ s is not permitted? b) n = 3, 1 = 2, m = + 2, s d) n = 3, 1 = 0, m = 0, s = ximum? c) O ²⁻ walent bonds is c) KCN bstance oxidised is c) S c) 6 Na ⁺ nt because in this state	ic mass 10) and 50% of element Y (atomic mass d) X ₂ Y ₃ = $\frac{1}{2}$ + $\frac{1}{2}$ d) Mg ²⁺ d) H ₂ O ₂ d) H ₂ O d) 4 Na+		
 51. 52. 53. 54. 55. 56. 57. 	The simplest formula of 20) is a) XY Which of the following a) $n = 3, 1 = 3, m = 0, s = -2, -$ Which of the following a) C^4 - The compound which of a) $C_2H_4Cl_2$ In the reaction, $SO_2 + 2$ a) H_2S Each unit cell of NaCl of a) 13 Na ⁺ A catalyst in a finely di a) It has a larger activati b) It can react with one of c) It has a large surface at d) It has a large surface at	b) X_2Y sets of quantum numbers $+\frac{1}{2}$ $\frac{1}{2}$ stonic radius would be mark b) N ³⁻ contains ionic as well as condition b) CH ₃ I H ₂ S \rightarrow 3 S + 2 H ₂ O, the sumble b) SO ₂ consists of 13 Cl ⁻ ions and b) 14 Na ⁺ vided state is more efficient on energy of the reactants more efficient area	50% of element X (atom c) XY ₃ s is not permitted? b) $n = 3, 1 = 2, m = + 2, s$ d) $n = 3, 1 = 0, m = 0, s =$ ximum? c) O ²⁻ vvalent bonds is c) KCN bostance oxidised is c) S c) 6 Na ⁺ nt because in this state	ic mass 10) and 50% of element Y (atomic mass d) X ₂ Y ₃ = $\frac{1}{2}$ + $\frac{1}{2}$ d) Mg ²⁺ d) H ₂ O ₂ d) H ₂ O d) 4 Na+		
 51. 52. 53. 54. 55. 56. 57. 58. 	The simplest formula of 20) is a) XY Which of the following a) $n = 3, 1 = 3, m = 0, s = -2, -$ Which of the following a) C ⁴ - The compound which of a) C ₂ H ₄ Cl ₂ In the reaction, SO ₂ + 2 a) H ₂ S Each unit cell of NaCl of a) 13 Na ⁺ A catalyst in a finely di a) It has a larger activati b) It can react with one of c) It has a low surface at Blood has been found t	b) X_2Y sets of quantum numbers $+\frac{1}{2}$ $\frac{1}{2}$ stionic radius would be ma b) N ³⁻ contains ionic as well as co b) CH ₃ I H ₂ S \rightarrow 3 S + 2 H ₂ O, the su b) SO ₂ consists of 13 Cl ⁻ ions and b) 14 Na ⁺ vided state is more efficie on energy of the reactants more efficie area rea o be isotonic with	50% of element X (atom c) XY ₃ s is not permitted? b) $n = 3, 1 = 2, m = + 2, s$ d) $n = 3, 1 = 0, m = 0, s =$ iximum? c) O ²⁻ ivalent bonds is c) KCN ibstance oxidised is c) S c) 6 Na ⁺ int because in this state	ic mass 10) and 50% of element Y (atomic mass d) X ₂ Y ₃ = $\frac{1}{2}$ + $\frac{1}{2}$ d) Mg ²⁺ d) H ₂ O ₂ d) H ₂ O d) H ₂ O d) 4 Na+		
 51. 52. 53. 54. 55. 56. 57. 58. 	The simplest formula of 20) is a) XY Which of the following a) $n = 3, 1 = 3, m = 0, s = -2,$ C) $m = 3, 1 = 2, m = -2,$ Which of the following a) C ⁴ - The compound which of a) C ₂ H ₄ Cl ₂ In the reaction, SO ₂ + 2 a) H ₂ S Each unit cell of NaCl of a) 13 Na ⁺ A catalyst in a finely di a) It has a larger activati b) It can react with one of c) It has a large surface at d) It has a low surface at Blood has been found t a) Conc. NaCl solution	b) X_2Y sets of quantum numbers $+\frac{1}{2}$ $\frac{1}{2}$ ionic radius would be ma b) N ³⁻ contains ionic as well as co b) CH ₃ I H ₂ S \rightarrow 3 S + 2 H ₂ O, the su b) SO ₂ consists of 13 Cl ⁻ ions and b) 14 Na ⁺ vided state is more efficie on energy of the reactants more efficie area rea to be isotonic with	50% of element X (atom c) XY ₃ is not permitted? b) $n = 3, 1 = 2, m = + 2, s$ d) $n = 3, 1 = 0, m = 0, s =$ iximum? c) O ²⁻ ivalent bonds is c) KCN ibstance oxidised is c) S c) 6 Na ⁺ int because in this state ently b) Very dil. NaCl solution	ic mass 10) and 50% of element Y (atomic mass d) X_2Y_3 = $\frac{1}{2}$ + $\frac{1}{2}$ d) Mg ²⁺ d) H ₂ O ₂ d) H ₂ O d) 4 Na+		
 51. 52. 53. 54. 55. 56. 57. 58. 	The simplest formula of 20) is a) XY Which of the following a) $n = 3, 1 = 3, m = 0, s = -2, -2$ C) $m = 3, 1 = 2, m = -2, -2$ Which of the following a) C ⁴ - The compound which of a) C ₂ H ₄ Cl ₂ In the reaction, SO ₂ + 2 a) H ₂ S Each unit cell of NaCl of a) 13 Na ⁺ A catalyst in a finely di a) It has a larger activati b) It can react with one of c) It has a large surface at Blood has been found t a) Conc. NaCl solution c) Normal saline solutio	b) X_2Y sets of quantum numbers $+\frac{1}{2}$ $\frac{1}{2}$ j ionic radius would be ma b) N ³⁻ contains ionic as well as co b) CH ₃ I H ₂ S \rightarrow 3 S + 2 H ₂ O, the su b) SO ₂ consists of 13 CI⁻ ions and b) 14 Na ⁺ vided state is more efficie on energy of the reactants more efficie area rea rea be isotonic with n	b) Very dil. NaCl solution b) Very dil. NaCl solution c) Structure b) $n = 3, 1 = 2, m = +2, s$ c) $n = 3, 1 = 0, m = 0, s = 10, $	ic mass 10) and 50% of element Y (atomic mass d) X_2Y_3 = $\frac{1}{2}$ + $\frac{1}{2}$ d) Mg ²⁺ d) H ₂ O ₂ d) H ₂ O d) 4 Na+		
 51. 52. 53. 54. 55. 56. 57. 58. 59. 	The simplest formula of 20) is a) XY Which of the following a) $n = 3, 1 = 3, m = 0, s = -2, -2$ C) $m = 3, 1 = 2, m = -2, -2$ Which of the following a) C ⁴ - The compound which of a) C ₂ H ₄ Cl ₂ In the reaction, SO ₂ + 2 a) H ₂ S Each unit cell of NaCl of a) 13 Na ⁺ A catalyst in a finely di a) It has a larger activati b) It can react with one of c) It has a large surface at d) It has a low surface at Blood has been found t a) Conc. NaCl solution c) Normal saline solutio	of a compound containing b) X_2Y (sets of quantum numbers) $+\frac{1}{2}$ $\frac{1}{2}$ (ionic radius would be mar b) N ³⁻ contains ionic as well as corble b) CH ₃ I H ₂ S \rightarrow 3 S + 2 H ₂ O, the sur b) SO ₂ consists of 13 Cl ⁻ ions and b) 14 Na ⁺ vided state is more efficient on energy of the reactants more efficient area rea to be isotonic with n ture of an aqueous solution	 50% of element X (atom c) XY₃ s is not permitted? b) n = 3, 1 = 2, m = + 2, s d) n = 3, 1 = 0, m = 0, s = eximum? c) O²⁻ walent bonds is c) KCN bostance oxidised is c) S c) 6 Na⁺ nt because in this state ently b) Very dil. NaCl solution d) Saturated NaCl solution n will cause 	ic mass 10) and 50% of element Y (atomic mass d) X_2Y_3 = $\frac{1}{2}$ + $\frac{1}{2}$ d) Mg ²⁺ d) H ₂ O ₂ d) H ₂ O d) 4 Na+		
 51. 52. 53. 54. 55. 56. 57. 58. 59. 	The simplest formula of 20) is a) XY Which of the following a) $n = 3, 1 = 3, m = 0, s = -2, -$ Which of the following a) C^4 - The compound which of a) $C_2H_4Cl_2$ In the reaction, $SO_2 + 2$ a) H_2S Each unit cell of NaCl of a) 13 Na ⁺ A catalyst in a finely di a) It has a larger activatif b) It can react with one of c) It has a large surface at d) It has a large surface at Blood has been found t a) Conc. NaCl solution c) Normal saline solutio Increasing the temperat a) decrease in molality	of a compound containing b) X_2Y sets of quantum numbers $+\frac{1}{2}$ $\frac{1}{2}$ sionic radius would be mark b) N ³⁻ contains ionic as well as condition b) CH ₃ I H ₂ S \rightarrow 3 S + 2 H ₂ O, the surk b) SO ₂ consists of 13 Cl ⁻ ions and b) 14 Na ⁺ vided state is more efficient on energy of the reactants more efficient area rea to be isotonic with n ture of an aqueous solution	 50% of element X (atom c) XY₃ s is not permitted? b) n = 3, 1 = 2, m = + 2, s d) n = 3, 1 = 0, m = 0, s = ximum? c) O²⁻ vvalent bonds is c) KCN vbstance oxidised is c) S c) 6 Na⁺ nt because in this state ently b) Very dil. NaCl solution d) Saturated NaCl solution n will cause b) decrease in molarity 	ic mass 10) and 50% of element Y (atomic mass d) X_2Y_3 = $\frac{1}{2}$ + $\frac{1}{2}$ d) Mg ²⁺ d) H ₂ O ₂ d) H ₂ O d) H ₂ O		
 51. 52. 53. 54. 55. 56. 57. 58. 59. 	The simplest formula of 20) is a) XY Which of the following a) $n = 3, 1 = 3, m = 0, s = -2, -$ Which of the following a) C ⁴ - The compound which of a) C ² H ₄ Cl ₂ In the reaction, SO ₂ + 2 a) H ₂ S Each unit cell of NaCl of a) 13 Na ⁺ A catalyst in a finely di a) It has a larger activati b) It can react with one of c) It has a large surface at Blood has been found t a) Conc. NaCl solution c) Normal saline solutio Increasing the temperat a) decrease in molality c) decrease in mole fract	b) X_2Y sets of quantum numbers $+\frac{1}{2}$ $\frac{1}{2}$ sionic radius would be ma b) N ³⁻ contains ionic as well as co b) CH ₃ I H ₂ S \rightarrow 3 S + 2 H ₂ O, the su b) SO ₂ consists of 13 Cl ⁻ ions and b) 14 Na ⁺ vided state is more efficie on energy of the reactants more efficie area rea to be isotonic with n ture of an aqueous solution tion	 50% of element X (atom c) XY₃ s is not permitted? b) n = 3, 1 = 2, m = + 2, s d) n = 3, 1 = 0, m = 0, s = ximum? c) O²⁻ vvalent bonds is c) KCN bstance oxidised is c) S c) 6 Na⁺ nt because in this state ently b) Very dil. NaCl solution d) Saturated NaCl solution m vill cause b) decrease in molarity d) decrease in % w/w 	ic mass 10) and 50% of element Y (atomic mass d) X_2Y_3 = $\frac{1}{2}$ + $\frac{1}{2}$ d) Mg ²⁺ d) H ₂ O ₂ d) H ₂ O d) 4 Na+		
 51. 52. 53. 54. 55. 56. 57. 58. 59. 60. 	The simplest formula of 20) is a) XY Which of the following a) $n = 3, 1 = 3, m = 0, s = -2,$ Which of the following a) C ⁴ - The compound which of a) C ₂ H ₄ Cl ₂ In the reaction, SO ₂ + 2 a) H ₂ S Each unit cell of NaCl of a) 13 Na ⁺ A catalyst in a finely di a) It has a larger activati b) It can react with one of c) It has a large surface at Blood has been found the a) Conc. NaCl solution c) Normal saline solution Increasing the temperat a) decrease in molality c) decrease in mole fract In which of the followin	b) X_2Y sets of quantum numbers $+\frac{1}{2}$ $\frac{1}{2}$ sionic radius would be mark b) N ³⁻ contains ionic as well as condition b) CH ₃ I H ₂ S \rightarrow 3 S + 2 H ₂ O, the surk b) SO ₂ consists of 13 Cl ⁻ ions and b) 14 Na ⁺ vided state is more efficient on energy of the reactants more efficient area to be isotonic with n ture of an aqueous solution in g case, does the reaction	 b) N = 3, 1 = 2, m = + 2, s c) XY₃ c) and permitted? b) n = 3, 1 = 2, m = + 2, s d) n = 3, 1 = 0, m = 0, s = e) n = 3, 1 = 0, m = 0, s = e) n = 3, 1 = 0, m = 0, s = e) n = 3, 1 = 0, m = 0, s = c) N = 0, m = 0, s = c) N = 0, m = 0, s = c) N = 0, m = 0, s = c) N = 0, m = 0, s = c) N = 0, m = 0, s = c) N = 0, m = 0, s = c) N = 0, m = 0, s = c) N = 0, m = 0, s = d) n = 3, 1 = 0, m = 0, s = d) n = 3, 1 = 0, m = 0, s = d) n = 3, 1 = 0, m = 0, s = d) n = 3, 1 = 0, m = 0, s = d) n = 3, 1 = 0, m = 0, s = d) n = 3, 1 = 0, m = 0, s = d) n = 3, 1 = 0, m = 0, s = d) n = 3, 1 = 0, m = 0, s = d) N = 0, m = 0, s = d) N = 0, m = 0, s = d) N = 10 	ic mass 10) and 50% of element Y (atomic mass d) X_2Y_3 = $\frac{1}{2}$ + $\frac{1}{2}$ d) Mg ²⁺ d) H ₂ O ₂ d) H ₂ O d) 4 Na+		
 51. 52. 53. 54. 55. 56. 57. 58. 59. 60. 	The simplest formula of 20) is a) XY Which of the following a) $n = 3, 1 = 3, m = 0, s = -2,$ Which of the following a) C ⁴ - The compound which of a) C ² H ₄ Cl ₂ In the reaction, SO ₂ + 2 a) H ₂ S Each unit cell of NaCl of a) 13 Na ⁺ A catalyst in a finely di a) It has a larger activati b) It can react with one of c) It has a large surface at Blood has been found t a) Conc. NaCl solution c) Normal saline solution Increasing the temperat a) decrease in mole fract In which of the followi a) K = 10 ² c) K = 10 ²	b) X_2Y sets of quantum numbers $+\frac{1}{2}$ $\frac{1}{2}$ cionic radius would be marked b) N ³⁻ contains ionic as well as conditional between the set of the set	 b) N = 3, 1 = 2, m = + 2, s c) XY₃ c) as not permitted? b) n = 3, 1 = 2, m = + 2, s d) n = 3, 1 = 0, m = 0, s = eximum? c) O²⁻ valent bonds is c) KCN valent bonds is c) KCN valent bonds is c) KCN valent bonds is c) S c) 6 Na⁺ nt because in this state ently b) Very dil. NaCl solution d) Saturated NaCl solution d) Saturated NaCl solution m will cause b) decrease in molarity d) decrease in % w/w go farthest to completion b) K = 10 d) K = 10 	ic mass 10) and 50% of element Y (atomic mass d) X_2Y_3 = $\frac{1}{2}$ + $\frac{1}{2}$ d) Mg ²⁺ d) H ₂ O ₂ d) H ₂ O d) 4 Na+		
 51. 52. 53. 54. 55. 56. 57. 58. 59. 60. 61 	The simplest formula of 20) is a) XY Which of the following a) $n = 3, 1 = 3, m = 0, s = -2,$ C) $m = 3, 1 = 2, m = -2,$ Which of the following a) C ⁴ - The compound which of a) C ₂ H ₄ Cl ₂ In the reaction, SO ₂ + 2 a) H ₂ S Each unit cell of NaCl of a) 13 Na ⁺ A catalyst in a finely di a) It has a larger activati b) It can react with one of c) It has a large surface at Blood has been found t a) Conc. NaCl solution c) Normal saline solution Increasing the temperat a) decrease in molality c) decrease in mole fract In which of the followi a) K = 10 ² c) K = 10 ⁻¹ 0 45 g of acid of molecre	b) X_2Y sets of quantum numbers $+\frac{1}{2}$ $\frac{1}{2}$ joinic radius would be ma b) N ³⁻ contains ionic as well as co b) CH ₃ I H ₂ S \rightarrow 3 S + 2 H ₂ O, the su b) SO ₂ consists of 13 Cl ⁻ ions and b) 14 Na ⁺ vided state is more efficie on energy of the reactants more efficie area rea to be isotonic with n ture of an aqueous solution ion ng case, does the reaction	 b) N = 3, 1 = 2, m = + 2, s c) XY₃ c) and permitted? b) n = 3, 1 = 2, m = + 2, s d) n = 3, 1 = 0, m = 0, s = eximum? c) O²⁻ c) O²⁻ c) KCN c) S c) 6 Na⁺ nt because oxidised is c) S c) 6 Na⁺ nt because in this state ently b) Very dil. NaCl solution d) Saturated NaCl solution d) decrease in molarity d) decrease in % w/w go farthest to completion b) K = 10 d) K = 1 c) Mathematical Saturation 	ic mass 10) and 50% of element Y (atomic mass d) X_2Y_3 = $\frac{1}{2}$ + $\frac{1}{2}$ d) Mg ²⁺ d) H ₂ O ₂ d) H ₂ O d) 4 Na+		
 51. 52. 53. 54. 55. 56. 57. 58. 59. 60. 61. 	The simplest formula of 20) is a) XY Which of the following a) $n = 3, 1 = 3, m = 0, s = -2, -$ C) $m = 3, 1 = 2, m = -2, -$ Which of the following a) C ⁴ - The compound which of a) C ₂ H ₄ Cl ₂ In the reaction, SO ₂ + 2 a) H ₂ S Each unit cell of NaCl of a) 13 Na ⁺ A catalyst in a finely di a) It has a larger activati b) It can react with one of c) It has a large surface at d) It has a low surface at Blood has been found t a) Conc. NaCl solution c) Normal saline solutio Increasing the temperat a) decrease in molality c) decrease in mole fract In which of the followi a) K = 10 ² c) K = 10 ⁻¹ 0.45 g of acid of molecu a) 1	b) X_2Y sets of quantum numbers $+\frac{1}{2}$ $\frac{1}{2}$ sionic radius would be mark b) N ³⁻ contains ionic as well as cord b) CH ₃ I H ₂ S \rightarrow 3 S + 2 H ₂ O, the surk b) SO ₂ consists of 13 Cl ⁻ ions and b) 14 Na ⁺ vided state is more efficient on energy of the reactants more efficient area rea to be isotonic with n ture of an aqueous solution tion ng case, does the reaction ular weight 90 was neutraling b) 2	 50% of element X (atom c) XY₃ s is not permitted? b) n = 3, 1 = 2, m = + 2, s d) n = 3, 1 = 0, m = 0, s = ximum? c) O²⁻ valent bonds is c) KCN bstance oxidised is c) S c) 6 Na⁺ nt because in this state ently b) Very dil. NaCl solution d) Saturated NaCl solution d) Saturated NaCl solution m will cause b) decrease in molarity d) decrease in % w/w go farthest to completion b) K = 10 d) K = 1 zed by 20 mL of 0.5 N car c) 3 	ic mass 10) and 50% of element Y (atomic mass d) X_2Y_3 = $\frac{1}{2}$ + $\frac{1}{2}$ d) Mg ²⁺ d) H ₂ O ₂ d) H ₂ O d) 4 Na+		

62.	The conjugate acid of NH_2^{-1} is				
	a) NH ₄	b) NH ₃	c) H ₂ H ₄	d) NH ₂ OH	
63.	The pH of 0.1 M acetic a	cid solution is			
	a) < 0	b) > 1	c) 1	d) 7	
64.	An example of Lewis aci	id is			
	a) NaCl	b) MgCl ₂	c) CCl ₄	d) AlCl ₃	
65.	In the reaction $A + B \rightarrow B$	Products, If B is taken in	excess, then it is an exam	ple of	
	a) second order reaction		b) zero order reaction		
	c) pseudo unimolecular r	reaction	d) first order reaction		
66.	1 mole of H ₂ SO ₄ is mixed	d with 2 moles of NaOH.	the heat evolved will be		
	a) 57.3 kJ		b) 2 × 57.3 kJ		
-	c) 57.3/2 kJ		d) cannot be predicted		
67.	Which of the following	will turn blue when place	ed in the copper vessel?		
60	a) $AginO_3$	b) aq. NaCl	c) $ZnSO_4$	d) aq. Cd $(NO_3)_2$	
68.	Neutrino can be detected	a during the emission of	、 <i>.</i>	1))/	
(0)	a) α-rays	b) β-particles	c) protons	d) X-rays	
69.	In metallurgical process,	, aluminium acts as			
	a) an oxidizing agent		b) reducing agent		
70	c) a nux	or tom or or the da and	d) a solder		
70.	a) Calgon's method	ove temporary nardness	b) Clark's method		
	c) Synthetic resin method	I	d) Ion exchange method		
71	KO_2 is used in space craft	ft and submarine because	it		
/1.	a) absorbs CO_2 and increa	ases Ω_2 concentration			
	b) absorbs moisture				
	c) absorbs CO_2				
	d) produces ozone				
72.	Which out of the followi	ing represents Baryta?			
	a) BaSO ₄	b) BaO	c) Ba(OH) ₂	d) BaCO ₃	
73.	Which of the following l	leaves no residue?			
	a) Pb(NO ₃) ₂	b) NH4NO3	c) Cu(NO ₃) ₂	d) NaNO3	
74.	Colloidal solution of gra	phite in water is called			
	a) oil dag	b) aquadag	c) lamp black	d) Anthracite	
75.	Which of the following of	does not react with water	?		
	a) Boron	b) Aluminium	c) Sodium	d) Thallium	
76.	The angular shape of mo	olecule O ₃ consists of?	1		
	a) I sigma bond and I pi	bond	b) 2 sigma bond and 1 pi	bond	
	c) I sigma bond and 2 pi	bond	d) 2 sigma bond and 2 pi	bond	
//.	r_{1} Ph Y ₂ \leq Sp Y ₂ \leq Co Y ₂ \leq	$S OI SI, Ge, SII and FD Inc < Si Y_2$	b) Co Y < Si Y < Sp Y <	r Ph Y.	
	a) $10 X_2 < 511 X_2 < Ge X_2 <$	$Sn X_2$	d) Si Ya \leq Ca Ya \leq Sn Ya \leq	$r Ph Y_{2}$	
78	On strongly heating lead	$\frac{1}{1}$ nitrate crystal the gas w	which is evolved is?	<10 X ₂	
70.	a) NO ₂	h) O2	c) NO	d) NO ₂ + O ₂	
79.	Superphosphate of lime	contains	-)		
	a) $Ca_3(PO_4)_2$	b) CaHPO ₄	c) $Ca_3(PO_4)_2 + H_3PO_4$	d) $Ca(H_2PO_4)_2$	
80.	Bromine can be liberated	d from potassium bromid	le solution by action of	, , ,	
	a) Iodine solution	-	b) Chlorine water		
	c) Sodium chloride		d) Potassium iodide		
81.	The gas which is used in	ı air ship is			
	a) Ne	b) He	c) Ar	d) Xe	
82.	Iron loses magnetic prop	perty at			
	a) Curie point	b) Boiling point	c) Melting point	d) 1000 K	
83.	Systematic name of urea	is			
	a) Diamino ketone		b) 1-aminoethanamide		
	c) 1-aminoethanamide	a b b b b b b b b b b	d) amino acetamide		
84.	I ne compound in which	\mathbf{U} uses its sp ³ hybrids or	bital for bond formation $(CU) = CU$		
QE	a) HUUUH Which of the fellowic = :	D) (INH2)2CU	c) $(CH_3)_3C - OH$	а) НСНО	
03.	a) Buta-1 3 diopo	is all optically active com	b) Propadiono		
	a) Duta-1, 5-utelle		d) Penta-13 diana		
86	Latest technique for pur	ification, isolation and co	naration of organic subst	ance is	
00.	a) distillation	incation, isolation and Sc	b) crystallization	milee 10	
	c) sublimation		d) chromatography		
87.	Treatment of RMgBr wit	th R'C = CH produces	,		
	a) R-H	b) R'-H	c) $R - R$	d) R – R'	

88. Alkylation of benzene with isobutene is presence of sulphuric acid gives CH₃ $CH_2CH(CH_3)_2$ CH₃ a) $CH = C(CH_3)_2$ CH₂CH₂CH₂CH₃CH₃ d) c) 89. Which alkyl halide has maximum density? d) CH₃Br c) CH₃I a) C_3H_7I b) C_2H_5I In their nucleophilic substitution reactions, aryl halides resemble 90. a) vinyl chloride b) allyl chloride c) benzyl chloride d) ethyl chloride 91. How many structural isomers are possible for $C_4H_{10}O$? a) 4 b) 5 c) 6 d) 7 92. Picric acid is b) 2, 4, 6-trinitrobenzene a) 2, 4, 6-trinitrotoluene c) 2, 4, 6-trinitrophenol d) para-nitrophenol 93. Diethyl ether can be decomposed by b) NaOH a) HI c) Water d) KMnO₄ Which of the following compounds gives ketone with Grignard reagent? 94. c) Ethyl alcohol d) Ethyl acetate a) Formaldehyde b) Ethanenitrile Dry HCl (g) -Й–СН₃ 95. Conc H₂SO X and Y are respectively a) mesityloxide, phorone b) phorone, mesitylene c) phorone, isophorone d) isophorone, mesitylene 96. Vinegar is a) 5% aqueous solution of acetic acid b) 20% alcoholic solution of acetic acid c) 100% acetic acid d) 95% acetic acid Ethanoic acid on reaction with hydrazoic acid (HN₃) yields 97. a) ethylamine b) acetamide c) methylamine d) nitroethane Reaction of CH₃CHO and aluminium ethoxide is called 98. a) Tishchenko reaction b) Clemmensen's reaction d) Etard's reaction c) Perkin reaction 99. Acetanilide finds application in medicine as a) Hypnotic b) Antiseptic c) Antipyretic d) Rosenmund's reaction 100. Nylon 66 is not a a) condensation polymer b) co-polymer c) polyamide d) homopolymer 101. **Right atrium contains** b) Deoxygenated blood a) Oxygenated blood c) Mixed blood d) Plasma The largest amount of CO₂ is transported by the blood in the form of 102. a) CO₂ in the plasma b) Bicarbonate ions in plasma c) H_2CO_3 in the plasma d) Bicarbonate ions in RBCs The end product of fat digestion is 103. a) Glycogen b) Glycerol c) Glucose d) Galactose Stensen's duct is associated with 104. a)Sublingual salivary gland Waston's b) Parotid salivary gland c) Sub maxillary salivary gland d) Brunner's glands Which of the following pairs does not match correctly in the context of embryonic development of frog? 105. a) Cleavage- radial b) Gastrula-blastopore c) Archenteron cavity - post gastrula stage d)Presumptive areas - blastula stage 106. Stratified squamous keratinized epithelium is seen in

c) Oesophagus d) Pharynx 107. The horizontal canals in the long bones of mammals are a) Volkman's canals b) Haversian canals c) Canaliculi

a) Epidermis of skin

d) Neural canals

b) Buccal cavity

108.	Adipose tissue is commonly known as				
	a)Loose connective tissue	b) Fat producing tissue			
	c) Fat storage tissue	d) Fluid connective tissue			
109.	Which primitive man first use fire?		, ,		
	a) African man b) Java man c) Proconsul d) China man				
110.	In his experiment on the formation of amino acid	icids, Stanley Miller passed an electric discharge in a mixture of			
a) Steam, CH_4 , H_2 and NH_3 b) CH , CO ,		b) CH, CO, O_2 and H_2			
	c) NH, O_2 H ₂ and steam	d) CH_4 , H_2 , N_2 and stear	n		
111. Below are listed some pairs of characters. The homologous pair is					
	a) Forelimbs of dogs and camel	b) Insect wing and bat w	ving		
	c) Feathers of birds and fins of fish	d) Lens of verte brate an	id arthropod		
112.	Bidder's canal is related to	-			
	a) Kidney of male frog	b) Kidney of female frog	Г -		
	c)Testis of male frog	d) Ovary of female frog	·		
113.	Spiral valve of the frog is found in	, , ,			
	a) Heart b) Truncus arteriosus	c) Conus arteriosus	d) Bulbous arteriosus		
114.	Aqueduct of sylvius is a structure, which connect	ts	,		
	a)Lateral ventricle to 3rd ventricle	b) Paracoel to diocoel			
	c) Diocoel to metacoel	d) Paracoel to metacoel			
115.	Geologically, one of the following eras is known	as "Golden age of reptile	es or Golden age of Dinosaurs"?		
	a)Mesozoic b) Cenozoic	c) Palaeozoic	d) Precambrian		
116.	Which of the following combination is incorrect?	2			
	a) Nematoda - Roundworms, Pseudocoelomate				
	b)Calcarea - Gastrovascular cavity. Coelom presen	ht			
	c) Echinodermata - Coelom present, radial symme	trv			
	d) Platyhelminthes - Accelomate, Flatworms				
117.	Periplaneta belongs to which phylum?				
	a) Mollusca b) Arthropoda	c) Annelida	d)Echinodermata		
118	Cnidaria is characterized by	c) i filicitati	ajlerintoaerintata		
110.	a) Tissue level of organization	b) Nematoblasts			
	c) Coelenteron	d) Tissue level Nematol	plasts Coelenteron		
110	Mesoderm gives rise to	a) fissue level, i veniator	Subst, Coclement		
11).	a) muscular tissue b) CNS	c) uripary bladder	d) skip		
120	In which of the following the heart is not ventral	in position?	d) Skill		
120.	a) Fish b) Frog	c) Lamprey	d) Silver fish		
121	Which of the following is a vertebrate organism?	c) Lampiey	d) Sliver list		
141,	a) Cuttle fish b) Cray fish	c) Devil fich	d) Flying fish		
122	Intermediate host of Ascaris is	c) Devii lisit	d) Hynng hish		
144,	a) Human	c) Snail	d) Absence of intermediate		
123	Trematodes are commonly called	c) shan	a) Absence of intermediate		
120.	a) Tapaworms b) Flukes	c) Roundworms	d) Eddy worms		
174	The typhlogole in earthworm is related to	c) Roundworms	d) Eddy worms		
124.	a) Respiration b) Excretion	c) Absorption	d) Reproduction		
105	In earthwarm the mouth is located on	c) Absorption	d) Reproduction		
125.	a) Stomium	a) Prostomium	d) Protostomium		
106	a) Stoffium D) Feristoffium		a) Protostolillulli		
120.	a) 10th and 11th b) 17th and 10th	c) 11th and 12th	d) 10th and 01at		
107	a) 10th and 11th b) 17th and 19th	c) 11th and 12th	a) 19th and 21st		
12/.	Sporozoites of Plasmodium enter	h) I imer celle of humans			
	a) KBC of humans	b) Liver cells of humans	.,		
100	c) Stomach of mosquito	d) Salivary glands of mo	osquito		
128.	Cryptozoites of Plasmodium are formed in				
	a) Pre-erythrocytic cycle	b) Erythrocytic cycle			
100	c) Exo-erythrocytic cycle	d) Sporogony			
129.	Catadromous migration of fish migrates from		1) C		
4.00	a) Sea to freshwater b) Fresh to sea water	c) Fresh to freshwater	d) Sea to seawater		
130.	Animals walking on Hoofs or nails are called				
	a) Plantigrade b) Unguligrade	c) Digitigrade	d) Polygradae		
131.	I hrush disease is caused by		1) ()		
	a) Mycobacterium b) Vibrio comma	c) Candide spp	d) Streptococcus		
132.	AIDS patient, which one is common?				
·	a) Cryptoccosis b) Histoplasmosis	c) Cytomegalovirus	d) Tuberculosis		
133.	Which of the following is not a Psychedelic drug	?			
	a) LSD b) Marijuana	c) Charas	d) Caffeine		
134.	Human sperm is divisible into head, body an	d tail regions, in which	n part of the sperm enzyme hyaluronidase is		
	synthesized?				
	a) Head of sperm	b) In the golgi bodies of	acrosome		
	c) In the lysosome of acrosome	d) In the main body and	tail region		

135.	A man has excessive growth of mammary glands but do not secrete milk. He is gradually developing some femal					
	characters as well. Wha	cters as well. What would be the disorder?		h) Compagamantia com duama		
	a) Addison's disease	ome	b) Gynaecomastia syndr	ome		
136.	Which sensory spot hel	ps in dynamic equilibriur	n?			
	a) Cristae	b) Macula	c) Organ of corti	d) All of the above		
137.	Hunger and thirst are u	inder direct control of				
120	a) Cerebrum	b) Cerebellum	c) Hypothalamus	d)Epithalamus		
130.	a) III. VII. IX and X b) Thoracic - sacral nerves			es		
	c)Thoracic - lumber nerv	ves	d) Cranio-sacral region of	of CNS		
139.	39. Nitrogenous waste is excreted mainly as					
	a) Urea in both frog and	tadpole	b) Urea in a frog and am	monia in tadpole		
140	c) Uric acid in frog and	urea in tadpole	() Urea in tadpole and ammonia in frog			
140.	person?	orpholi, which of the foll	lowing is completely lea	iosorbed from giomerular fintate in a hearing		
	a) Glucose and amino a	cid	b) Urea and salt			
	c) Uric acid and urea		d) Salt and ammonia			
141.	First microscope was in	wented by				
	a)Scheldien and Schwar	n	b) Fleming and Brown			
142.	Germ theory of disease	s was given by	u) Robert Hooke			
	a)Joseph Lister	b) Robert Hooke	c) Leeuwenhoek	d) Louis Pasteur		
143.	Artificial culture is imp	ossible in		, ,		
	a) Yeast	b) Penicillium	c) Mucor	d) Bacteriophage		
144.	Mycetology is the study	y of b) Plants	a) Physicamusotas	d) Algoo		
145	The mode of nutrition	of Agaricus is	c) i nyconnycetes	u) Algae		
	a) Heterotrophic	b) Autotrophic	c) Symbiotic	d) Parasitic		
146.	Embryo without vascul	ar tissues belong to		, ,		
	a) Pteridophytes	b) Algae	c) Gymnosperms	d)Bryophytes		
147.	Mesarch is arrangemen	t of vascular bundles pres	ent in of ferns.	d) Caples		
148	<i>Cucas</i> is popularly kno	b) Roois whas	c) Knizome	u) Scales		
110.	a) Royal palm	b) Sea palm	c) Sago palm	d) Date palm		
149.	Phylloclade has	, 1	, 01	, 1		
	a) spines	b) scales	c) both	d) internodes only		
150.	All are monocarpic plan	h) Durne malue	a) Diaum actizuum	d) Omiza catizoa		
151.	a) <i>Leu muys</i> Berry fruit is present in	b) Pyrus mutus	C) Pisum suttoum	d) Oryzu suttou		
101.	a) onion	b) carrot	c) potato	d)cabbage		
152.	Indefinite floral whorle	s is characteristic of	71	, 0		
	a) Papilionaceae	b) Cruciferae	c) Solanaceae	d) Malvaceae		
153.	Cold ecosystem is	h) Dimon a constant		d) True due accountant		
154	Edaphic factor in ecosy	stem is	c) Sea ecosystem	a) Tunara ecosystem		
101.	a) Sunlight	b) Atmosphere	c) Soil	d) Topography		
155.	Stress xerophyte is	, I	,	, 1015		
	a) Epiphytes	b) Oxylophyte	c) Lithophytes	d) Chersophyte		
156.	DDT is most common j	pollutant of	a) Cail mallertian	d) All transport rellection		
157	a) Air pollution Photosynthetic nigmen	b) water pollution	c) Son ponution	d) All types of pollution		
157.	a) Oxysomes	b) Grana	c) Cristae	d) Stroma		
158.	Mitochondria was disc	overed by Kolliker from	,	,		
	a) Heart cells	b) Rabbit liver cells	c) Flight muscle cells	d) Kidney cells		
159.	Kinetochore is a structu	Ire associated with				
160	a) DNA Direct division of cell i	b) KNA	c) Chromosome	d) vacuoles		
100.	a) Meiosis	b) Amitosis	c) Mitosis	d) Cytokinesis		
161. Chargaff rule is related with			-,-,-			
	a) DNA structure b) Genetic nature of			A		
160	c) Replication of DNA	ma dina ia	d) Chemical composition	Chemical composition of DNA		
162.	b2. Enzyme of DNA proof reading is					
163.	The cross between pure	e homozygous tall and dw	arf parent produce	a) Divit polymerase		
	a) 75% tall: 25% dwarf	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	b) all tall in F1 generation	n		
	c) all dwarf in F1 genera	ition	d)50% tall: 50% dwarf			

a) Haploid chromosome b) Haploid chromosome + 1 c) Diploid chromosome b) Haploid chromosome + 1 d) Diploid chromosome + 1 d) Carbina do DNA c) Cut double strand of DNA d) Medullary rays d) Maxanometer d) Diseventa b) Dicarotenoids d) Anthocyanin d) Diseph Priestly d) Diseph	164.	The number of linkage group is equal to				
c) Diploid chromosomed) Diploid chromosome + 1165Which element is not present in nucleosides? a) Cb) Hc) Od) P166Holandric genes are found in a) X chromosomeb) Y chromosomec) XY chromosomesd) XX chromosomes167.Restriction endonucleases a) Cut single strand of DNAb) Cut double strand of DNAd) X chromosomes167.Restriction endonucleases a) Cut single strand of DNAb) Cut double strand of DNAd) Cut RNA strand168.The distantly related hybridization is a) Cauliflower and cabbageb) Radish and mustard c) Mustard and turnipd) Cabbage and turnip169.Conducting tissues does not include a) Sieve tubesb) Tracheidc) Companion cellsd) Medullary rays170.Osmosis is measured by a) Blackmanb) Emersion et al.c) Robert Hilld) Joseph Priestly171.Prigments system was proposed by a) Blackmanb) Emersion et al.c) Phycobilind) Anthocyanin173.Bacterial mitochondria is a) Anthophyllb) Carotenoidsc) Phycobilind) Anthocyanin173.Bacterial mitochondria is a) Anthophyllb) Garotenoidsc) Cultonidisd) Michoran175.Flowering hormone in short day plant is a) Auxinsb) Gibberellinsc) Cell divisiond) Meiosis175.Homering hormone in short day plant is a) Endotheciumc) Cell divisiond) Meiosis176.Syngamy is a) Auxinsb) Gibberellinsc) Cell divisiond) Meiosis177.Anemophily is the pollination by a)		a) Haploid chromosome		b) Haploid chromosome + 1		
165Which element is not present in nucleosides? a) COd) P166Holandric genes are found in a) X chromosome b) Y chromosomec) Od) P167Restriction endonucleases a) Cut single strand of DNA c) Join the strands of DNA d) Cut single strand of DNA c) Join the strands of DNA d) Cut RNA strandd) Cut RNA strand168The distantly related hybridization is a) Cauliflower and cabbage c) Mustard and turnipb) Radish and mustard d) Cabbage and turnip169Conducting tissues does not include a) Sieve tubes b) Tracheid c) Mustard and turnipd) Cabbage and turnip169Conducting tissues does not include a) Sieve tubes b) Tracheid c) Companion cellsd) Medullary rays170Osmosis is measured by a) Blackman b) Root hairs c) Tracheary cells d) Auxanometerd) Auxanometer171Pigments system was proposed by a) Blackman b) Carotenoids c) Phycobilind) Joseph Priestly172Colour pigment found in vacuoles are a) Xanthophyll b) Carotenoids c) Phycobilind) Anthocyanin173Bacterial mitochondria is a) Auxins b) Gibberellins c) Colour d) Mg**d) Mg**174Which is not needed during glycolysis? a) ATP b) NAD c) Coludinic c) Cytokinind) Beetle175Flowering hormone in short day plant is a) Auxins b) Gibberellins c) Cytokinind) Beetle175Howering hormone in short day plant is a) Auxins b) Air c) Beesc) Middle layer c) Bees176Syngamy is a) Endothecium b) Aigaec) Beesl c) Middle layer <td< th=""><th></th><th colspan="2">c) Diploid chromosome</th><th>d) Diploid chromosome</th><th>e + 1</th></td<>		c) Diploid chromosome		d) Diploid chromosome	e + 1	
a) C b) H c) O d) P 166. Holandric genes are found in a) X chromosome b) Y chromosome c) XY chromosomes d) XX chromosomes a) Cut single strand of DNA b) Cut double strand of DNA c) Join the strands of DNA d) Cut RNA strand 168. The distantly related hybridization is a) Cauliflower and cabbage b) Radish and mustard c) Mustard and turnip d) Cabbage and turnip 169. Conducting tissues does not include a) Sieve tubes b) Tracheid c) Companion cells d) Medullary rays a) Hypodermis b) Root hairs c) Tracheary cells d) Auxanometer 711. Pigments system was proposed by a) Hypodermis b) Root hairs c) Tracheary cells d) Auxanometer a) Sackman b) Emersion et al. c) Robert Hill d) Joseph Priestly 172. Colour pigment found in vacuoles are a) Xanthophyll b) Carotenoids c) Phycobilin d) Anthocyanin 173. Backterial mitochondria is a) Mesosome b) Mitochondria c) Chondroids d) Cytoplasm 174. Which is not needed during glycuysis? a) AIP b) NAD c) O: O: d) Mg ⁺⁺ 175. Flowering hormone in short day plant is a) Auxins b) Gibberellins c) Cytokinin d) Ethylene 176. Syngamy is a) Auxins b) Gibberellins c) Cuell division d) Meiosis 177. Anemophily is the pollination by a) Water b) Air c) Bees d) Beetle 178. Innermost nutritive layer of microsporangium is a) Endothecium b) Epidermis c) Bees d) Beetle 179. Large group biofertilizers belongs to a) Fungi b) Algae c) Higher plants d) Microbes 180. Among these, which one is a product of Biotechonology? a) Skin b) Bacteria c) Plants d) Vaccine 181. Which number will replace the question mark? $\frac{\left(\frac{1}{2} + \frac{2}{2} + \frac{2}$	165	.Which element is no	t present in nucleosides?	, I		
166.Holandric genes are found in a) X chromosomeb) Y chromosomec) XY chromosomesd) XX chromosomesa) XX chromosomeb) Y chromosomec) XY chromosomesd) XX chromosomesa) Cut single strand of DNAb) Cut double strand of DNAc) Join the strands of DNAd) Cut RNA strandc) Join the strands of DNAd) Cut RNA strandd) Cut RNA strand168.The distantly related hybridization is a) Cauliflower and cabbageb) Radish and mustard c) Mustard and turnipd) Cabbage and turnipc) Mustard and turnipd) Cabbage and turnipd) Cabbage and turnip169.Conducting tissues does not include a) Sieve tubesb) Tracheidc) Companion cellsd) Medullary rays170.Osmosis is measured by a) Hypodermisb) Root hairsc) Tracheary cellsd)Auxanometer171.Pigments system was proposed by a) Blackmanb) Emersion et al.c) Robert Hilld) Joseph Priestly172.Colour pigment found in vacuoles are a) Mathophyllb) Carotenoidsc) Phycobilind) Anthocyanin173.Bacterial mitochondria is a) Atripb) NADc) O2d) Mg ⁺⁺ 175.Flowering hormone in short day plant is a) Auxinsb) Gibberellinsc) Cell divisiond) Meiosis176.Syngany is a) Mitocisb) Fertilizationc) Cell divisiond) Meiosis177.Anemophily is the pollination by a) Materb) Airc) Beesd) Beetle178.Innermost nutritive layer of microsporangium is a) Endotheciumb) Algaec) Higher		a) C	b) H	c) O	d) P	
a) X chromosomeb) Y chromosomec) XY chromosomesd) XX chromosomes167.Restriction endonucleasesa) Cut single strand of DNAb) Cut double strand of DNAc) Join the strands of DNAd) Cut RNA strand168.The distantly related hybridization isa) Cauliflower and cabbageb) Radish and mustardc) Mustard and turnipd) Cabbage and turnipd) Cabbage and turnip169.Conducting tissues does not included) Cabbage and turnipa) Sieve tubesb) Tracheidc) Companion cellsd) Medullary rays170.Osmosis is measured bya) Hypodermisb) Root hairsc) Tracheary cellsd)Auxanometer171.Prigments system was proposed bya) Blackmanb) Emersion et al.c) Robert Hilld) Joseph Priestly173.Bacterial mitochondria isa) ATPb) NADc) Chondroidsd) Cytoplasm174.Which is not needed during glycolysis?a) ATPb) NADc) O2d) Microsisa) ATPb) NADc) O2d) Meiosisf175.Flowering hormone in short day plant isa) Attrasd) Beterlina bya) Mitosisb) Fertilizationc) Cell divisiond) Meiosis176.Syngamy isc) Bacesd) Bacteriad) Microbes177.Anemophily is the pollination bya) Endotheciumb) Aigac) Beesd) Microbes178.Innermost nutritive layer of microsporangium is a) Endotheciumb) Aigac) Middle layerd) Microbes <t< th=""><th>166.</th><th>Holandric genes are</th><th>found in</th><th></th><th></th></t<>	166.	Holandric genes are	found in			
167.Restriction endonucleases a) Cut single strand of DNA c) Join the strand sof DNA d) Cut RNA strandb) Cut double strand of DNA d) Cut RNA strand168.The distantly related hybridization is a) Cauliflower and cabbage c) Mustard and turnipb) Radish and mustard d) Cabbage and turnip169.Conducting tissues does not include a) Sieve tubes b) Tracheidc) Companion cells c) Companion cellsd) Medullary rays170.Osmosis is measured by a) Hypodermis b) Root hairs a) Hypodermis b) Root hairsc) Tracheary cells c) Tracheary cellsd) Auxanometer171.Pigments system was proposed by a) Blackman b) Emersion et al. c) Robert Hilld) Joseph Priestly172.Colour pigment found in vacuoles ar a) Xanthophyll b) Carotenoids c) Phycobilind) Anthocyanin173.Bacterial mitochondria is a) Auxins b) Mitochondriac) Chondroids c) Chondroidsd) Cytoplasm174.Which is not needed during glycolysis? a) AITP b) NAD c) O2d) Meiosisd) Meiosis175.Flowering hormone in short day plant is a) Auxins b) Gibberellins c) Cytokinind) Ethylene176.Syngamy is a) Mitosis b) Fertilization c) Cell division d) Meiosisd) Meiosis177.Anemophily is the pollination by a) Water b) Air c) Bacteriac) Middle layer c) Middle layerd) Microbes178.Innermost nutritive layer of microsporangium is a) Endothecium b) Fighermiss c) Middle layerd) Microbes178.Innermost nutritive layer of microsporangium is a) Skin b) Algae c) Pi		a) X chromosome	b) Y chromosome	c) XY chromosomes	d) XX chromosomes	
a) Cut single strand of DNA b) Cut double strand of DNA c) Join the strands of DNA d) Cut RNA strand d) Cabbage and turnip d) Comoosis is measured by d) Comons is measured by d) Companion cells d) Medullary rays d) Rypodermis b) Root hairs c) Tracheary cells d) Auxanometer d) Rypodermis b) Root hairs c) Tracheary cells d) Auxanometer d) Rypodermis b) Root hairs c) Tracheary cells d) Auxanometer d) Auxanometer d) Cour pigment found in vacuoles are d) Comor pigment found in glycolysis? d) Anthophyll b) Carotenoids c) Chondroids d) Cytoplasm d) Anthocyanin d) Mitch is not needed during glycolysis? d) Auxanometer during glycolysis? d) Auxins b) Gibberellins c) Cord d) Mgt+ distand d) Mitch is portioned in short day plant is d) Auxins b) Fertilization c) Cell division d) Meiosis d) Mater b) Air c) Distand d) Mitcois d) Meiosis d) Cytoplasm d) Mitcois b) Fertilization d) C) Cell division d) Meiosis d) Mater b) Air c) Bees d) Beetle division d) Meiosis d) Mater b) Air c) Bees d) Beetle division d) Mitcois d) Mitcois b) Figidermis c) C Higher plants d) Mitcois d)	167.	Restriction endonucl	eases	,	, ,	
c) Join the strands of DNA d) Cut RNA strand 168. The distantly related hybridization is a) Cauliflower and cabbage b) Radish and mustard c) Mustard and turnip d) Cabbage and turnip 169. Conducting tissues does not include a) Sieve tubes b) Tracheid c) Companion cells d) Medullary rays Tracheary cells d) Medullary rays 170. Osmosis is measured by a) Hypodermis b) Root hairs c) Tracheary cells d) Auxanometer a) Hypodermis b) Root hairs c) Tracheary cells d) Auxanometer a) Blackman b) Emersion et al. c) Robert Hill d) Joseph Priestly 172. Colour pigment found in vacuoles are a) Xanthophyll b) Carotenoids c) Phycobilin d) Anthocyanin 173. Bacterial mitochondria is a) Masosome b) Mitochondria c) Chondroids d) Cytoplasm 174. Which is not needed during glycolysis? a) ATP b) NAD c) O2 d) Mg ⁺⁺ 175. Flowering hormone in short day plant is a) Auxins b) Gibberellins c) Cytokinin d) Ethylene 176. Syngamy is a) Mitosis b) Fertilization c) Cell division d) Meiosis 177. Anemophily is the pollination by a) Water b) Air c) Bees d) Beetle 178. Innermost nutritive layer of microsporangium is a) Endothecium b) Epidermis c) Middle layer d) Tapetum 179. Large group biofertilizers belongs to a) Fungi b) Algae c) High plants d) Microbes 180. Among these, which one is a product of Biotechnology a) Skin b) Bacteria c) Plants d) Vaccine 181. Which number will replace the question mark? $\frac{\left(\frac{\delta}{2} + \frac{\gamma}{2} + \frac{\delta}{2} + \frac{\delta}{2$		a) Cut single strand o	f DNA	b) Cut double strand of DNA		
168.The distantly related hybridization is a) Cauliflower and cabbageb) Radish and mustard (C) Mustard and turnipc) Cabbage and turnip169.Conducting tissues does not include a) Sieve tubesb) Tracheidc) Companion cellsd) Medullary rays170.Osmosis is measured by a) Hypodermisc) Tracheary cellsd) Auxanometer171.Pigments system was proposed by a) Blackmanc) Robert Hilld) Joseph Priestly172.Colour pigment found in vacuoles are a) Xanthophyllb) Carotenoidsc) Phycobilind) Anthocyanin173.Bacterial mitochondria is a) Mesosomeb) Mitochondriac) Chondroidsd) Cytoplasm174.Which is not needed during glycolysis? a) ATPb) NADc) O2d) Mg++175.Flowering hormone in short day plant is a) Auxinsb) Fertilizationc) Cytokinind) Ethylene176.Syngamy is a) Mitosisb) Fertilizationc) Cell divisiond) Meiosis177.Anemophily is the pollination by a) Endotheciumb) Airc) Beesd) Beetle178.Innermost nutritive layer of microsporangium is a) Endotheciumc) Midale layerd) Tapetum179.Large group biofertilizers belongs to a) Fungib) Algaec) Higher plantsd) Microbes179.Large group biofertilizers belongs to a) Fungib) Algaec) Higher plantsd) Microbes179.Large group biofertilizers belongs to a) Fungib) Algaec) Plantsd) Microbes179.Large group biofertilizers belongs t		c) Join the strands of l	DNA	d) Cut RNA strand		
a) Cauliflower and cabbage b) Radish and mustard c) Mustard and turnip d) Cabbage and turnip 169. Conducting tissues does not include a) Sieve tubes b) Tracheid c) Companion cells d) Medullary rays 170. Osmosis is measured by a) Hypodermis b) Root hairs c) Tracheary cells d) Auxanometer 171. Prigments system was proposed by a) Blackman b) Emersion et al. c) Robert Hill d) Joseph Priestly 172. Colour pigment found in vacuoles are a) Xanthophyll b) Carotenoids c) Phycobilin d) Anthocyanin 173. Bacterial mitochondria is a) Mesosome b) Mitochondria c) 174. Which is not needed during glycolysis? a) ATP b) NAD c) O ₂ d) Mg ⁺⁺ 175. Flowering hormone in short day plant is a) Auxins b) Gibberellins c) Cytokinin d) Ethylene 176. Syngamy is a) Mitosis b) Fertilization c) Cell division d) Meiosis 177. Anemophily is the pollination by a) Water b) Air c) Bees d) Beetle 178. Innermost nutritive layer of microsporangium is a) Endothecium b) Epidermis c) Middle layer d) Tapetum 179. Large group biofertilizers belongs to a) Endothecium b) Epidermis c) Higher plants d) Microbes 179. Large group biofertilizers belongs to a) Endothecium b) Epidermis c) Higher plants d) Microbes 180. Anong these, which one is a product of Biotechnology? a) Skin b) Bacteria c) Plants d) Microbes 181. Which number will replace the question mark?	168.	The distantly related	hybridization is			
c) Mustard and turnip d) Cabbage and turnip 169. Conducting tissues does not include a) Sieve tubes b) Tracheid c) Companion cells d) Medullary rays 170. Osmosis is measured by a) Hypodermis b) Root hairs c) Tracheary cells d)Auxanometer 171. Pigments system was proposed by a) Blackman b) Emersion et al. c) Robert Hill d) Joseph Priestly 172. Colour pigment found in vacuoles are a) Xanthophyll b) Carotenoids c) Phycobilin d) Anthocyanin 173. Bacterial mitochondria is a)Mesosome b) Mitochondria c) Chondroids d) Cytoplasm 174. Which is not needed during glycolysis? a) ATP b) NAD c) O2 d) Mg ⁺⁺ 175. Flowering hormone in short day plant is a) Auxins b) Gibberellins c) Cytokinin d) Ethylene 176. Syngany is a) Mitosis b) Fertilization c) Cell division d) Meiosis 177. Anemophily is the pollination by a) Water b) Air c) Bees d) Beetle 178. Innermost nutritive layer of microsporangium is a) Endothecium b) Epidermis c) Middle layer d) Tapetum 179. Large group biofertilizers belongs to a) Fungi b) Algae c) Higher plants d) Microbes 180. Among these, which one is a product of Biotechnology? a) Skin b) Bacteria c) Plants d) Vaccine 181. Which number will replace the question mark?		a) Cauliflower and ca	bbage	b) Radish and mustard		
169.Conducting tissues does not include a) Sieve tubesb) Tracheidc) Companion cellsd) Medullary rays170.Osmosis is measured by a) Hypodermisb) Root hairsc) Companion cellsd) Medullary rays171.Pigments system was proposed by a) Blackmanb) Emersion et al.c) Tracheary cellsd) Auxanometer171.Pigments system was proposed by a) Blackmanb) Emersion et al.c) Robert Hilld) Joseph Priestly172.Colour pigment found in vacuoles are a) Xanthophyllb) Carotenoidsc) Phycobilind) Anthocyanin173.Bacterial mitochondria is a) Mesosomeb) Mitochondriac) Chondroidsd) Cytoplasm174.Which is not needed during glycolysis? a) ATPb) NADc) O2d) Mg++175.Flowering hormone in short day plant is a) Auxinsb) Gibberellinsc) Cytokinind) Ethylene176.Syngamy is a) Mitosisb) Fertilizationc) Cell divisiond) Meiosis177.Anemophily is the pollination by a) Waterb) Airc) Beesd) Beetle178.Innermost nutritive layer of microsporangium is a) Endotheciumb) Eiglermisc) Middle layerd) Tapetum179.Large group biofertilizers belongs to a) Fungib) Algaec) Higher plantsd) Microbes180.Among these, which one is a product of Biotechnology? a) Skinb) Bacteriac) Plantsd) Vaccine181.Which number will replace the question mark? $\frac{\left\{ \frac{4}{20 \ 8} \right\} \left\{ \frac{7}{20 \ 8} \right\} \left\{ \frac{5}{2} \right\} \left\{ \frac{5}{2} \right\} \left\{ 5$		c) Mustard and turnip	· ·	d) Cabbage and turnip		
a) Sieve tubes b) Tracheid c) Companion cells d) Medullary rays a) Hypodermis b) Root hairs c) Tracheary cells d) Auxanometer a) Backman b) Emersion et al. c) Robert Hill d) Joseph Priestly a) Blackman b) Emersion et al. c) Robert Hill d) Joseph Priestly 172. Colour pigment found in vacuoles are a) Xanthophyll b) Carotenoids c) Phycobilin d) Anthocyanin 173. Bacterial mitochondria is a)Mesosome b) Mitochondria c) Chondroids d) Cytoplasm 174. Which is not needed during glycolysis? a) ATP b) NAD c) O ₂ O ₂ d) Mg ⁺⁺ 175. Flowering hormone in short day plant is a) Auxins b) Gibberellins c) Cytokinin d) Ethylene 176. Syngamy is a) Mitosis b) Fertilization c) Cell division d) Meiosis 177. Anemophily is the pollination by a) Water b) Air c) Bees d) Beetle 178. Innermost nutritive layer of microsporangium is a) Endothecium b) Epidermis c) Middle layer d) Tapetum 179. Large group biofertilizers belongs to a) Fungi b) Algae c) Higher plants d) Microbes 180. Among these, which one is a product of Biotechnology? a) Skin b) Bacteria c) Plants d) Vaccine 181. Which number will replace the question mark? $ \frac{\left(\frac{6}{2} + \frac{2}{26} + \frac{2}{26} + \frac{2}{2} + \frac{2}{12} $	169.	Conducting tissues d	oes not include			
170.Osmosis is measured by a) Hypodermisb) Root hairsc) Tracheary cellsd) Auxanometer171.Pigments system was proposed by a) Blackmanb) Emersion et al.c) Robert Hilld) Joseph Priestly172.Colour pigment found in vacuoles are a) Xanthophyllb) Carotenoidsc) Phycobilind) Anthocyanin173.Bacterial mitochondria is a) Mesosomeb) Mitochondriac) Chondroidsd) Cytoplasm174.Which is not needed during glycolysis? a) ATPb) NADc) O2d) Mg++175.Flowering hormone in short day plant is a) Auxinsb) Gibberellinsc) Cytokinind) Ethylene176.Syngamy is a) Mitosisb) Fertilizationc) Cell divisiond) Meiosis177.Anemophily is the pollination by a) Waterb) Airc) Beesd) Beetle178.Innermost nutritive layer of microsporangium is a) Endotheciumb) Epidermisc) Middle layerd) Tapetum179.Large group biofertilizers belongs to a) Fungib) Algaec) Higher plantsd) Microbes180.Among these, which one is a product of Biotechnology? a) Skinb) Bacteriac) Plantsd) Vaccine181.Which number will replace the question mark? $\left(\frac{6}{2} \\ \frac{1}{2} \\ \frac{7}{26} \\ \frac{6}{2} \\ \frac{1}{2} \\ \frac{7}{2} \\ \frac{6}{2} \\ \frac{6}{2} \\ \frac{1}{2} \\ \frac{7}{2} \\ \frac{6}{2} \\ \frac{6}{2} \\ \frac{1}{2} \\ \frac{7}{2} \\ \frac{7}{2}$		a) Sieve tubes	b) Tracheid	c) Companion cells	d) Medullary rays	
a) Hypodermis b) Root hairs c) Tracheary cells d)Auxanometer 171. Pigments system was proposed by a) Blackman b) Emersion et al. c) Robert Hill d) Joseph Priestly 172. Colour pigment found in vacuoles are a) Xanthophyll b) Carotenoids c) Phycobilin d) Anthocyanin 173. Bacterial mitochondria is a)Mesosome b) Mitochondria c) Chondroids d) Cytoplasm 174. Which is not needed during glycolysis? a) ATP b) NAD c) O ₂ d) Mg ⁺⁺ 175. Flowering hormone in short day plant is a) Auxins b) Gibberellins c) Cytokinin d) Ethylene 176. Syngamy is 177. Anemophily is the pollination by a) Water b) Air c) Bees d) Beetle 178. Innermost nutritive layer of microsporangium is a) Endothecium b) Epidermis c) Middle layer d) Tapetum 179. Large group biofertilizers belongs to a) Fungi b) Algae c) Higher plants d) Microbes 180. Among these, which one is a product of Biotechnology? a) Skin b) Bacteria c) Plants d) Microbes 181. Which number will replace the question mark?	170.	Osmosis is measured	by			
171.Pigments system was proposed by a) Blackmanb) Emersion et al.c) Robert Hilld) Joseph Priestly172.Colour pigment found in vacuoles are a) Xanthophyllb) Carotenoidsc) Phycobilind) Anthocyanin173.Bacterial mitochondria is a)Mesosomeb) Mitochondriac) Chondroidsd) Anthocyanin173.Bacterial mitochondria is a)Mesosomeb) Mitochondriac) Chondroidsd) Cytoplasm174.Which is not needed during glycolysis? a) ATPb) NADc) O2d) Mg*+175.Flowering hormone in short day plant is a) Auxinsb) Gibberellinsc) Cytokinind) Ethylene176.Syngamy is a) Mitosisb) Fertilizationc) Cell divisiond) Meiosis177.Anemophily is the pollination by a) Waterb) Air c b) Bair c b) Air c c) Beesd) Beetle178.Innermost nutritive layer of microsporangium is a) Endotheciumb) Epidermis c) Middle layerd) Microbes179.Large group biofertilizers belongs to a) Fungib) Algaec) Higher plantsd) Microbes180.Among these, which one is a product of Biotechnology? a) Skinb) Bacteria c) Plantsd) Vaccine181.Which number will replace the question mark? $\frac{\sqrt{2}{2}}$ $\frac{\sqrt{2}}{2}$ $\frac{\sqrt{2}}{2}$		a) Hypodermis	b) Root hairs	c) Tracheary cells	d)Auxanometer	
a) Blackman b) Emersion et al. c) Robert Hill d) Joseph Priestly 172. Colour pigment found in vacuoles are a) Xanthophyll b) Carotenoids c) Phycobilin d) Anthocyanin 173. Bacterial mitochondria is a)Mesosome b) Mitochondria c) Chondroids d) Cytoplasm 174. Which is not needed during glycolysis? a) ATP b) NAD c) O ₂ d) Mg ⁺⁺ 175. Flowering hormone in short day plant is a) Auxins b) Gibberellins c) Cytokinin d) Ethylene 176. Syngamy is a) Mitosis b) Fertilization c) Cell division d) Meiosis 177. Anemophily is the pollination by a) Water b) Air c) Bees d) Beetle 178. Innermost nutritive layer of microsporangium is a) Endothecium b) Epidermis c) Middle layer d) Tapetum 179. Large group biofertilizers belongs to a) Fungi b) Algae c) Higher plants d) Microbes 180. Among these, which one is a product of Biotechnology? a) Skin b) Bacteria c) Plants d) Vaccine 181. Which number will replace the question mark? $ \frac{\left(\frac{\delta}{20} \frac{\delta}{20} \frac{\sqrt{2} \frac{\delta}{2}}{\frac{\delta}{20} \frac{\delta}{2}} \frac{\frac{\delta}{2}}{\frac{122}} $	171.	Pigments system was	s proposed by			
172.Colour pigment found in vacuoles are a) Xanthophyllb) Carotenoidsc) Phycobilind) Anthocyanin173.Bacterial mitochondria is a) Mesosomeb) Mitochondriac) Chondroidsd) Cytoplasm174.Which is not needed during glycolysis? a) ATPb) NADc) O2d) Mg++175.Flowering hormone in short day plant is a) Auxinsb) Gibberellinsc) Cytokinind) Ethylene176.Syngamy is a) Mitosisb) Fertilizationc) Cell divisiond) Meiosis177.Anemophily is the pollination by a) Waterb) Airc) Beesd) Beetle178.Innermost nutritive layer of microsporangium is a) Endotheciumb) Epidermisc) Middle layerd) Tapetum179.Large group biofertilizers belongs to a) Fungib) Algaec) Higher plantsd) Microbes180.Among these, which one is a product of Biotechnology? a) Skinb) Bacteriac) Plantsd) Vaccine181.Which number will replace the question mark? $\frac{6}{2}$ $\frac{5}{2}$ $\frac{1}{12}$		a) Blackman	b) Emersion et al.	c) Robert Hill	d) Joseph Priestly	
a) Xanthophyll b) Carotenoids c) Phycobilin d) Anthocyanin 173. Bacterial mitochondria is a)Mesosome b) Mitochondria c) Chondroids d) Cytoplasm 174. Which is not needed during glycolysis? a) ATP b) NAD c) O ₂ d) Mg ⁺⁺ 175. Flowering hormone in short day plant is a) Auxins b) Gibberellins c) Cytokinin d) Ethylene 176. Syngamy is a) Mitosis b) Fertilization c) Cell division d) Meiosis 177. Anemophily is the pollination by a) Water b) Air c) Bees d) Beetle 178. Innermost nutritive layer of microsporangium is a) Endothecium b) Epidermis c) Middle layer d) Tapetum 179. Large group biofertilizers belongs to a) Fungi b) Algae c) Higher plants d) Microbes 180. Among these, which one is a product of Biotechnology? a) Skin b) Bacteria c) Plants d) Vaccine 181. Which number will replace the question mark? $\frac{\left(\frac{\delta}{28} \frac{\delta}{8}\right) \left(\frac{7}{28} \frac{\delta}{7} \frac{\delta}{12}$	172.	Colour pigment foun	d in vacuoles are			
173.Bacterial mitochondria is a)Mesosome b) Mitochondriac) Chondroidsd) Cytoplasm174.Which is not needed during glycolysis? a) ATP b) NADc) O2d) Mg++175.Flowering hormone in short day plant is a) Auxins b) Gibberellins b) Gibberellinsc) Cytokinin c) Cytokinind) Ethylene176.Syngamy is a) Mitosis b) Fertilization a) Mitosis b) Fertilization b) Airc) Cell division c) Cell divisiond) Meiosis177.Anemophily is the pollination by a) Water b) Airc) Beesd) Beetle178.Innermost nutritive layer of microsporangium is a) Endothecium b) Epidermis c) Middle layerd) Tapetum179.Large group biofertilizers belongs to a) Fungi b) Algaec) Higher plants c) Microbesd) Microbes180.Among these, which one is a product of Biotechnology? a) Skin b) Bacteriac) Plantsd) Vaccine181.Which number will replace the question mark? $\frac{\sqrt{7}}{28}$ $\frac{6}{21}$		a) Xanthophyll	b) Carotenoids	c) Phycobilin	d) Anthocyanin	
a)Mesosome b) Mitochondria c) Chondroids d) Cytoplasm 174. Which is not needed during glycolysis? a) ATP b) NAD c) O ₂ d) Mg ⁺⁺ 175. Flowering hormone in short day plant is a) Auxins b) Gibberellins c) Cytokinin d) Ethylene 176. Syngamy is a) Mitosis b) Fertilization c) Cell division d) Meiosis 177. Anemophily is the pollination by a) Water b) Air c) Bees d) Beetle 178. Innermost nutritive layer of microsporangium is a) Endothecium b) Epidermis c) Middle layer d) Tapetum 179. Large group biofertilizers belongs to a) Fungi b) Algae c) Higher plants d) Microbes 180. Among these, which one is a product of Biotechnology? a) Skin b) Bacteria c) Plants d) Vaccine 181. Which number will replace the question mark? $ \frac{6}{40} \frac{7}{208} \frac{7}{288} \frac{6}{212} $	173.	Bacterial mitochondria is				
174.Which is not needed during glycolysis? a) ATPb) NADc) O_2 d) Mg ⁺⁺ 175.Flowering hormone in short day plant is a) Auxinsb) Gibberellinsc) O_2 d) Mg ⁺⁺ 175.Flowering hormone in short day plant is a) Auxinsb) Gibberellinsc) Cytokinind) Ethylene176.Syngamy is a) Mitosisb) Fertilizationc) Cell divisiond) Meiosis177.Anemophily is the pollination by a) Waterb) Airc) Beesd) Beetle178.Innermost nutritive layer of microsporangium is a) Endotheciumb) Epidermisc) Middle layerd) Tapetum179.Large group biofertilizers belongs to a) Fungib) Algaec) Higher plantsd) Microbes180.Among these, which one is a product of Biotechnology? a) Skinb) Bacteriac) Plantsd) Vaccine181.Which number will replace the question mark? $\frac{6}{7}$ $\frac{1}{12}$ $\frac{6}{7}$ $\frac{5}{7}$		a)Mesosome	b) Mitochondria	c) Chondroids	d) Cytoplasm	
a) ATP b) NAD c) O_2 d) Mg ⁺⁺ 175. Flowering hormone in short day plant is a) Auxins b) Gibberellins c) Cytokinin d) Ethylene 176. Syngamy is a) Mitosis b) Fertilization c) Cell division d) Meiosis 177. Anemophily is the pollination by a) Water b) Air c) Bees d) Beetle 178. Innermost nutritive layer of microsporangium is a) Endothecium b) Epidermis c) Middle layer d) Tapetum 179. Large group biofertilizers belongs to a) Fungi b) Algae c) Higher plants d) Microbes 180. Among these, which one is a product of Biotechnology? a) Skin b) Bacteria c) Plants d) Vaccine 181. Which number will replace the question mark? $\int \frac{6}{20} \frac{4}{20} \int \frac{7}{26} \frac{9}{8} \int \frac{6}{7} \frac{5}{12}$	174.	Which is not needed during glycolysis?				
175.Flowering hormone in short day plant is a) Auxinsb) Gibberellinsc) Cytokinind) Ethylene176.Syngamy is a) Mitosisb) Fertilizationc) Cell divisiond) Meiosis177.Anemophily is the pollination by a) Waterb) Airc) Beesd) Beetle178.Innermost nutritive layer of microsporangium is a) Endotheciumd) Epidermisc) Middle layerd) Tapetum179.Large group biofertilizers belongs to a) Fungib) Algaec) Higher plantsd) Microbes180.Among these, which one is a product of Biotechnology? a) Skinb) Bacteriac) Plantsd) Vaccine181.Which number will replace the question mark? $\left(\frac{6}{20} \frac{4}{8}\right) \left(\frac{7}{26} \frac{9}{8}\right) \left(\frac{6}{7} \frac{12}{12}\right)$ $\left(\frac{6}{2} \frac{4}{20}\right) \left(\frac{7}{26} \frac{9}{8}\right) \left(\frac{6}{7} \frac{12}{12}\right)$ $\left(\frac{1}{2} + \frac{1}{2}\right)$		a) ATP	b) NAD	c) O ₂	d) Mg++	
a) Auxins b) Gibberellins c) Cytokinin d) Ethylene 176. Syngamy is a) Mitosis b) Fertilization c) Cell division d) Meiosis 177. Anemophily is the pollination by a) Water b) Air c) Bees d) Beetle 178. Innermost nutritive layer of microsporangium is a) Endothecium b) Epidermis c) Middle layer d) Tapetum 179. Large group biofertilizers belongs to a) Fungi b) Algae c) Higher plants d) Microbes 180. Among these, which one is a product of Biotechnology? a) Skin b) Bacteria c) Plants d) Vaccine 181. Which number will replace the question mark? $\begin{pmatrix} 6 & 4 \\ 20 & 8 \end{pmatrix} \begin{pmatrix} 7 & 9 \\ 26 & 8 \end{pmatrix} \begin{pmatrix} 6 & 5 \\ 7 & 12 \end{pmatrix}$	175.	Flowering hormone i	n short day plant is			
176.Syngamy is a) Mitosisb) Fertilizationc) Cell divisiond) Meiosis177.Anemophily is the pollination by a) Waterb) Airc) Beesd) Beetle178.Innermost nutritive layer of microsporangium is a) Endotheciumb) Epidermisc) Middle layerd) Tapetum179.Large group biofertilizers belongs to a) Fungib) Algaec) Higher plantsd) Microbes180.Among these, which one is a product of Biotechnology? a) Skinb) Bacteriac) Plantsd) Vaccine181.Which number will replace the question mark? $\frac{6}{20}$ $\frac{7}{26}$ $\frac{9}{26}$ $\frac{6}{7}$ $\frac{5}{7}$		a) Auxins	b) Gibberellins	c) Cytokinin	d) Ethylene	
a) Mitosis b) Fertilization c) Cell division d) Meiosis 177. Anemophily is the pollination by a) Water b) Air c) Bees d) Beetle 178. Innermost nutritive layer of microsporangium is a) Endothecium b) Epidermis c) Middle layer d) Tapetum 179. Large group biofertilizers belongs to a) Fungi b) Algae c) Higher plants d) Microbes 180. Among these, which one is a product of Biotechnology? a) Skin b) Bacteria c) Plants d) Vaccine 181. Which number will replace the question mark? $\int \frac{6}{20} \frac{4}{8} \int \frac{7}{26} \frac{9}{8} \int \frac{6}{7} \frac{12}{12}$	176.	Syngamy is				
177.Anemophily is the pollination by a) Waterb) Airc) Beesd) Beetle178.Innermost nutritive layer of microsporangium is a) Endotheciumb) Epidermisc) Middle layerd) Tapetum179.Large group biofertilizers belongs to a) Fungib) Algaec) Higher plantsd) Microbes180.Among these, which one is a product of Biotechnology? a) Skinb) Bacteriac) Plantsd) Vaccine181.Which number will replace the question mark? $\frac{6}{20}$ $\frac{7}{26}$ $\frac{9}{26}$ $\frac{6}{7}$ $\frac{12}{12}$		a) Mitosis	b) Fertilization	c) Cell division	d) Meiosis	
a) Water b) Air c) Bees d) Beetle 178. Innermost nutritive layer of microsporangium is a) Endothecium b) Epidermis c) Middle layer d) Tapetum 179. Large group biofertilizers belongs to a) Fungi b) Algae c) Higher plants d) Microbes 180. Among these, which one is a product of Biotechnology? a) Skin b) Bacteria c) Plants d) Vaccine 181. Which number will replace the question mark? $\int \frac{6}{20} \frac{4}{8} \int \frac{7}{26} \frac{9}{8} \int \frac{6}{7} \frac{12}{12}$	177.	Anemophily is the p	ollination by			
178.Innermost nutritive layer of microsporangium is a) Endotheciumb) Epidermisc) Middle layerd) Tapetum179.Large group biofertilizers belongs to a) Fungib) Algaec) Higher plantsd) Microbes180.Among these, which one is a product of Biotechnology? a) Skinb) Bacteriac) Plantsd) Vaccine181.Which number will replace the question mark? $\left(\frac{6}{20} + \frac{3}{8}\right)$ $\left(\frac{7}{26} + \frac{9}{26}\right)$ $\left(\frac{6}{2} + \frac{3}{2}\right)$ $\left(\frac{6}{2} + \frac{3}{2}\right)$	4 20	a) Water	b) Air	c) Bees	d) Beetle	
a) Endothecium b) Epidermis c) Middle layer d) Tapetum 179. Large group biofertilizers belongs to a) Fungi b) Algae c) Higher plants d) Microbes 180. Among these, which one is a product of Biotechnology? a) Skin b) Bacteria c) Plants d) Vaccine 181. Which number will replace the question mark? $\int \frac{6}{20} \frac{4}{8} \int \frac{7}{26} \frac{9}{8} \int \frac{6}{7} \frac{5}{12}$	178.	Innermost nutritive I	ayer of microsporangium is			
179. Large group biorertilizers belongs to a) Fungib) Algaec) Higher plantsd) Microbes180. Among these, which one is a product of Biotechnology? a) Skinb) Bacteriac) Plantsd) Vaccine181. Which number will replace the question mark? $\frac{6}{20}$ $\frac{7}{26}$ 9 $\frac{6}{7}$ $\frac{5}{7}$	150	a) Endothecium	b) Epidermis	c) Middle layer	d) Tapetum	
a) Fungib) Argaec) Fighter plantsd) Microbes180.Among these, which one is a product of Biotechnology? a) Skinb) Bacteriac) Plantsd) Vaccine181.Which number will replace the question mark? $\begin{pmatrix} 6 & 4 \\ 20 & 8 \end{pmatrix}$ $\begin{pmatrix} 7 & 9 \\ 26 & 8 \end{pmatrix}$ $\begin{pmatrix} 6 & 5 \\ 7 & 12 \end{pmatrix}$	179.	Large group biofertil	izers belongs to	a) II: also an also ato	d) Missishas	
a) Skin b) Bacteria c) Plants d) Vaccine 181. Which number will replace the question mark? $\begin{pmatrix} 6 \\ 20 \\ 8 \end{pmatrix}$ $\begin{pmatrix} 7 \\ 9 \\ 26 \\ 8 \end{pmatrix}$ $\begin{pmatrix} 6 \\ 5 \\ 7 \\ 12 \end{pmatrix}$	100	a) Fungi	D) Algae	c) riigner plants	d) Microbes	
181. Which number will replace the question mark? $\begin{pmatrix} 6 & 4 \\ 20 & 8 \end{pmatrix}$ $\begin{pmatrix} 7 & 9 \\ 26 & 8 \end{pmatrix}$ $\begin{pmatrix} 6 & 5 \\ 7 & 12 \end{pmatrix}$	100.	a) Slin	b) Pactoria	a) Planta	d) Vaccina	
$\begin{array}{c} 6 \\ \hline 4 \\ \hline 20 \\ \hline 8 \\ \hline \end{array} \\ \hline $	101	a) SKIII	D) Dacteria	c) i lants	u) vaccile	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	101.					
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				
a) 23 b) 25 c) 27 d) 29		a) 23	b) 25	c) 27	d) 29	

- 182. If + means ÷, - means x, x means +, ÷ means -, then give the value for $45 + 9 - 3 \times 15 \div 2$ b) 36 c) 56 d) 28 a) 40
- 183. Jai is 15th from left and Vijay is 14th from right. When they interchange their positions respectively then Vijay becomes 21st from right end. What will be Jai's position from left after interchanging? b) 22 a) 25 c) 27 d) 28

184.What is the angle made by hour hand in 1 hour 30 minutes?
a)
$$30^{\circ}$$
b) 45° c) 90°

d) 120° 185. Select the word from the given alternative which cannot be formed using the letters of the word "CHARACTER". d) CRATE a) TRACER b) CHARTER c) HEARTY

186. Study the given diagram and answer the following questions:

How many artists are neither players nor doctors? b) 17

187.

a) 10

c) 30

- Eleven students A, B, C, D, E, F, G, H, I, J and K are sitting in first line facing to the teacher.
- i) D who is just to the left of F, is to the right of C at second place.
 - ii) A is second to the right of E who is at one end.

b) I

iii) J is the nearest neighbor of A and B and is to the left of G at third place.

iv) H is next to D to the left and is at the third place to the right of I.

Who is just in the middle?

a) J

c) B

d) 15

d) G

199. Find out which of the answer figures (a), (b), (c) and (d) completes the figure matrix?

200. Find the water image.

🔶 🔶 Thank You !!! 🔶 🔶